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Abstract

In this paper, I match long-run reactions of a representative agent new Keynesian

model in which households’ utility function is augmented by a preference for bond holding

(RANK-BUF) to a calibrated heterogeneous agent model (HANK). I find that the RANK-

BUF model displays similar behavior to the HANK model for shocks that induce changes

to the real interest rate but that leave other equilibrium prices mostly unchanged. Changes

of equilibrium prices alter the profile of risk households face in the HANK model which

is a channel that is absent from the representative agent framework. The RANK-BUF

model is hence only a good stand-in for shocks that move along the HANK model supply

of funds curve.
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1 Introduction

A new class of models in which households face uninsurable idiosyncratic income risk and nom-

inal rigidities (the so-called heterogeneous agent new Keynesian models or HANK models) have

been at the frontier of macroeconomic research in recent years. Yet while the potential of mod-

eling rich household heterogeneity may be desirable in some applications, the added complexity

of both the economic environment as well as the requirement of numerical solution may present

a cumbersome hurdle in cases where the aggregates are of primary interest. In an effort to

circumvent some of the downsides of HANK models complexity, Kaplan and Violante (2018)

proposed a representative agent model in which the utility function of agents is augmented by a

preference for positive bond holdings (the RANK-BUF model). The justification is that includ-

ing bonds in the utility function directly introduces an additional motive for holding bonds akin

to the self-insurance in the case of uninsurable idiosyncratic risk. This self-insurance motive

introduces positive relationship between equilibrium quantity of safe assets and real interest

rate, as analyzed by Aiyagari (1994), and the RANK-BUF model attempts to capture similar

considerations in a reduced-form way.

In this paper I perform numerical analysis of the similarity between dynamic responses in a

small scale HANK model, the RANK-BUF model, and the standard RANK model. The idea

is to discipline the reactions of the RANK-BUF model to shocks by matching its steady state

(or long run) supply of funds curve to the one implied by a desired HANK calibration.

I find that the similarity of responses to aggregate shocks depends significantly on the prop-

erties of the shock in question. In particular, all three models display similar behavior following

a transitory monetary policy shock. This kind of shock ends up not inducing sufficiently per-

sistent change in bond demand or supply which would allow the assumption of valued bonds

to play a bigger role in determining the equilibrium outcomes. One can interpret this result

through the prism of permanent income behavior – households attempt to smooth transitory in-

come changes and hence display little reaction in their consumption decisions; the consumption

smoothing channel dominates for sufficiently transitory shocks. In so far as the other aspects of

the economy are held constant across the models, small desired changes in consumption result

in similar overall macroeconomic behavior. This result means that it is important to consider

highly persistent shocks, at least in this calibration, if one wishes to investigate the possible

implications of the variation in the supply of funds curve between RANK model on the one

hand and RANK-BUF and HANK models on the other.
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Turning to highly persistent shocks, I first consider persistent shocks to government target

debt levels. This shock brings out the main difference between the RANK model with its flat

supply of funds curve and and the RANK-BUF and HANK models that have matched upward-

sloping curve. The result is that the procedure of matching the supply of funds slopes succeeds

in making the RANK-BUF and the HANK models behave very similarly whereas the RANK

model shows slight deviations, especially in the flexible price limit. Because price stickiness has

redistributive effect, it drives the HANK and RANK-BUF models somewhat apart.

I finally consider a highly persistent TFP shock as a way to model a shock shifting the HANK

model supply of funds curve. This channel is by definition absent from the representative agent

models because the channel operates through changing the risk that households face. I focus

on the conservative case with households not facing idiosyncratic risk in profits. I find that

the RANK-BUF is not particularly well-suited as an approximation for this shock and behaves

instead more similarly to the standard RANK model.

The present work contributes into a broad literature evaluating the implications of incom-

plete markets for economic dynamics. Specifically, Nakajima (2005) demonstrates analytically

that shocks to the discount factor of the representative agent in a real business cycle model can

be derived from microeconomic market incompleteness. Building on this early work, Berger,

Bocola, and Dovis (2019) establish more generally that a large class of heterogeneous agent

economies can be equivalently represented by economies with complete markets and stochas-

tic shocks to preferences. They provide examples of this equivalence in models with condi-

tions guaranteeing no trade in assets (the so-called zero liquidity economies) and with various

borrowing limits. Werning (2015) also establishes similar equivalence result in several model

economies.

The existence proof notwithstanding, construction of equivalent economies away from the

zero liquidity limit is challenging. In this context, Krueger and Lustig (2010) construct such an

equivalence under considerably strict assumptions implying constant interest rate even in an

enviroment with aggregate risk. In relation to the present work, their assumptions preclude the

analysis of liquidity providing role of government debt (or equivalently its role in relaxing the

borrowing constraints) which has been one of the hallmarks of heterogeneous agent literature

since the work of Aiyagari and McGrattan (1998).

Turning to numerical simulations, Kaplan and Violante (2018) and Auclert, Rognlie, and

Straub (2018) explore the similarity of the RANK-BUF models relative to HANK models away

from the zero liquidity limit like the present work. The difference lies in the method of model
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matching – the two papers match short run impulse responses directly without regard for the

implied steady state supply of funds curve. Incidentally, the latter set of authors view RANK-

BUF specification less favorably than the former.

There are several recent papers that study the implications of including bonds in the utility

function. Michaillat and Saez (2018) study the RANK-BUF model under the assumption of

zero liquidity given positive marginal utility of wealth at this point. Hagedorn (2018) relates

RANK-BUF model to HANK model where the latter is again limited to the zero liquidity.

Mian, Straub, and Sufi (2020) justify the assumption of bonds in the utility function by a

bequest motive but work with a calibration implying downward sloping steady state supply of

funds curve.

The models in question are often compared to the work by Gaĺı, López-Salido, and Vallés

(2007) on a spender-saver kind of new Keynesian models (the TANK model). The justification

for TANK models comes from estimated positive reaction of consumption to government spend-

ing shocks on the macroeconomic level, a relationship that favors the addition of non-Ricardian

(spender) households into the economic model. The RANK-BUF model on the other hand

is matched to the microeconomic behavior of agents facing uninsurable idiosyncratic income

risk. The preference for bond holding in agents’ utility function breaks Ricardian equivalence of

government financing while the equivalence is preserved in the TANK framework – this means

that persistent changes in the amount of issued government bonds impact the level of interest

rate in RANK-BUF.

The specific setup of the models I consider follows the model of Bayer, Lütticke, Pham-Dao,

and Tjaden (2019) with the exception that I abstract from the capital accumulation (such that

I work with a one asset HANK model) and simplify the household side of the economy by

assuming uniform distribution of profits.

The remainder of this paper is organized as follows. Section 2 describes the RANK, RANK-

BUF, and HANK models I use while Section 3 provides the description of calibration and the

benchmark steady state. Section 4 then focuses on the analysis of fluctuations around the

benchmark steady state. Section 5 concludes.

2 Setup of the models

This section introduces the specifications of the three economic environments that I consider

– the heterogeneous agent new Keynesian (HANK) model, the representative agent new Key-

4



nesian model with bonds in the utility function (RANK-BUF model), and the representative

agent new Keynesian (RANK) model. Each model consists of the household sector, the govern-

ment sector, and the firm sector. The latter two sectors are assumed to be identical across the

models while the household sector is not – households in the RANK-BUF model have a direct

preference for holding bonds in their utility function whereas the HANK model households face

uninsurable idiosyncratic income risk. The standard RANK model can hence be understood as

a special case of either of the two remaining models.

The government sector that I consider differs from a more standard setup in two ways.

Firstly, government levies labor and profit taxes instead of lump-sum taxes. This choice is made

because labor and profit taxes apply more naturally in the context of the HANK economy than

lump-sum taxes.

Secondly, the fiscal side of the government operates with constant taxation, exogenous bond

issuance target, and government spending that adjusts endogenously to balance the budget.

I utilize this setting of the fiscal arm in order to avoid the impact of possible changes in

taxation which would occur in the regime with active monetary and passive fiscal policy regime

if taxation borne the endogenous adjustment and government spending was exogenous. Changes

in taxation have direct effects on the level of idiosyncratic risk that households face in the HANK

model I consider and therefore can shift the model’s supply of funds curve. I focus on the issue

of determinacy given various policy regimes in the Appendix A.

I denote the benchmark steady state values by variables without time subscripts throughout

the paper. The following subsection describes the complete characterization of the RANK-BUF

model while the section thereafter describes the household sector of the HANK model.

2.1 RANK-BUF model

This subsection introduces the RANK-BUF economy as well as the special case of the RANK

model which simply abstracts from the assumption of valued bonds.

Households. The economy consists of a unit measure of identical households who face the

following problem:

max
{ct,nt,bt}∞t=0

E0

∞∑
t=0

βt

[
1

1− γ

(
ct −

n1+ϕ
t

1 + ϕ
+ F (bt)

)1−γ

− 1

1− γ

]
(1a)

subject to ct + bt =
1 + it−1

1 + πt
bt−1 + (1− τ)(wtnt + Πt), t ≥ 0 (1b)

b−1, i−1 given. (1c)
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Households make decisions in period t about real consumption ct, labor supply nt, as well

as about the amount of real bond holdings bt carried over to period t + 1. The inflation level

πt (defined as 1 + πt = Pt

Pt−1
in terms of the price level from the firm sector), the real wage

level wt, and real profits Πt are equilibrium objects with stochastic behavior that households

take as given. The nominal interest rate it and the amount of real bonds bt are assumed to be

controlled by the government – incorporating standard feedback rules specified below. τ is a

time-constant wage and profits tax rate.

The utility function of households takes the standard Greenwood, Hercowitz, and Huffman

(1988) (GHH) form augmented with the additional direct preference for holding real bonds,

F (bt). This specification implies that the steady state supply of funds curve of the households

is independent of the level of government purchases, a feature that also holds for the version

of the HANK model I consider as long as no change is made to the prices households face. I

parameterize the function F (bt) by using the following flexible form:

F (bt) = ξ
(bt + bi)1−φ − 1

1− φ
,

where ξ, bi, and φ are non-negative parameters that can be though of as the slope, intercept,

and curvature of the steady state supply of funds curve, respectively. The assumed functional

form of F implies that the steady state supply of funds curve can be calibrated as upward-

sloping in the (b, r) space, with the upper bound of 1
β
− 1. Setting ξ = 0 recovers the RANK

model specification. β ∈ (0, 1), γ ≥ 0, and ϕ > 1 are the remaining parameters.

The first order condition of a household with respect to bt takes the following form:

(−1 + F ′(bt))λt + β Et
[

1 + it
1 + πt+1

λt+1

]
= 0 (2)

where

λt =

(
ct −

n1+ϕ
t

1 + ϕ
+ F (bt)

)−γ
. (3)

The labor first order condition becomes:

(1− τ)wt − nϕt = 0. (4)

I also define the real interest rate relationship in the following way:

1 + rt = Et
1 + it

1 + πt+1

. (5)

Government. The government in this economy uses tax revenues and sales of new nominal

bonds to pay back the old bonds and finance real government purchases gt. This means that
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the government budget constraint becomes:

gt +
1 + it−1

1 + πt
bt−1 = τ(wtnt + Πt) + bt. (6)

For convenience, I denote the government tax revenues Tt:

Tt = τ(wtnt + Πt). (7)

I further assume that the nominal interest rate it and the issued amount of real bonds bt

evolve according to the following feedback rules:

it = i+ ρi(it−1 − i) + θmπt + εmt, (8)

bt = (1− ρb)b̄t + ρbbt−1 − θfππt − θfT (Tt − T ), (9)

b̄t = (1− ρb̄)b+ ρb̄b̄t−1 + εbt. (10)

Monetary policy follows a standard Taylor rule formulation with interest rate smoothing

and is subject to monetary policy shocks. I work with zero inflation level at the benchmark

steady state.

Government bonds follow a partial adjustment process represented by equation (8) whereby

the level of newly issued bonds bt shifts in the direction of the current bond target level b̄t. The

bond target level itself follows an exogenous process which is subject to stochastic shocks. In

steady state, both the actual level of bonds as well as the bond target take on the exogenous

value b. Given this bond rule and fixed taxation level, government budget constraint determines

the endogenous government spending level, i.e. government spending adjusts endogenously to

satisfy the government budget constraint. In addition, government bond issuance reacts to

both inflation and tax revenues in order to guarantee determinacy also in case of monetary

dominance.

In sum, one can view ρi, ρb, ρb̄, θm, θfπ, and θfT as the parameters defining policies of the

government sector. I consider values of ρi, ρb, and ρb̄ that belong in the interval [0, 1) whereas

I leave the sizes of θm, θfπ, and θfT open prior to investigating the determinacy of the system.

Firms. The firm sector is composed of competitive final good firms and a unit-mass of

monopolistically-competitive intermediate goods firms facing Rotemberg price-setting friction.

Specifically, final good firms combine intermediate goods by using the CES production

function:

yt =

(∫ 1

0

yt(j)
ε−1
ε dj

) ε
ε−1
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with ε > 1 being the elasticity of intermediate goods substitution and j ∈ [0, 1] indexing the

intermediate goods firms. Final good firms hence maximize nominal period profits by choosing

quantities of intermediate goods yt(j) subject to their prices Pt(j):

max
{yt(j)}1j=0

Ptyt −
∫ 1

0

Pt(j)yt(j)dj.

This profit maximization gives the demand curves:

yt(j) =

(
Pt(j)

Pt

)−ε
yt

and the aggregate price index (definition of nominal output):

P 1−ε
t =

∫ 1

0

Pt(j)
1−εdj.

The intermediate goods firms choose their price Pt(j) and the amount of employed labor

nt(j) in order to maximize discounted real period profits:

max
{Pt(j),nt(j)}∞t=0

E0

∞∑
t=0

βt

[
Pt(j)

Pt
yt(j)− wtnt(j)−

εyt
2κ

(
log

Pt(j)

Pt−1(j)

)2
]

(11a)

subject to yt(j) = zt−1nt(j)
1−α, t ≥ 0 (11b)

yt(j) =

(
Pt(j)

Pt

)−ε
yt (11c)

P−1(j), z−1 given. (11d)

κ > 0 is the Rotemberg price adjustment frictions parameter and 1 − α ∈ (0, 1) is the labor

share in the production function. zt−1 is the aggregate total factor productivity following a

partial adjustment process:

zt = (1− ρz)z̄t + ρzzt−1, (12)

z̄t = (1− ρz̄)z + ρz̄ z̄t−1 + εzt. (13)

as for the case of government bonds above. z is a steady state constant chosen to normalize

the steady state output to 1.

The presence of the demand equation (11c) in the maximization problem gives rise to a

wedge, mct(j), in the labor first order condition:

wt = mct(j)(1− α)zt−1n
−α
t (j)

Similarly, the first order condition with respect to the price becomes:

(1− ε)
(
Pt(j)

Pt

)−ε
1

Pt
− ε

κ
log

(
Pt(j)

Pt−1(j)

)
1

Pt(j)
+ εmct(j)

(
Pt(j)

Pt

)−ε
1

Pt(j)
−

−β Et
[
yt+1

yt

ε

κ
log

(
Pt+1(j)

Pt(j)

)(
− 1

Pt(j)

)]
= 0
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Absent any heterogeneity in the initial price level P−1(j), the decisions of individual firms

need to be identical since they solve identical problems with unique solution given determinacy

at the aggregate level. As such, the aggregated conditions become:

wt = mct(1− α)zt−1n
−α
t (14)

κ

(
1− ε
ε

+mct

)
= log (1 + πt)− β Et

[
yt+1

yt
log (1 + πt+1)

]
(15)

yt = zt−1n
1−α
t (16)

Πt = (1− (1− α)mct) yt −
εyt
2κ

(log (1 + πt))
2 (17)

Equilibrium. Conditions (1b), (2)-(10), (12)-(17) form a dynamic system in bt−1, it−1,

b̄t−1, zt−1, z̄t−1, ct, nt, wt, gt, mct, πt, yt, Πt, λt, rt, and T . Variables with index t− 1 represent

state variables at time t. In addition, εmt, εbt, and εzt are the exogenous shocks.

Model solution. I linearize the equilibrium conditions around the non-stochastic zero-

inflation steady state and solve the resulting linear system with the method of Klein (2000). In

the implementation, I include stochastic shocks as state variables.

2.2 The HANK model

This section introduces in greater detail the HANK model. The government and firm sectors

are identical to the representative agent model version whereas households now face uninsurable

idiosyncratic risk modeled as a Markov chain for labor productivity ξit−1.

Households. I consider a setting in which a household i faces the following problem:

max
{cit,nit,bit}∞t=0

E0

∞∑
t=0

βt

[
1

1− γ

(
cit − ξit−1

n1+ϕ
it

1 + ϕ

)1−γ

− 1

1− γ

]
(18a)

subject to cit + bit =
1 + it−1

1 + πt
bit−1 + (1− τ)(ξit−1wtnit + Πt), t ≥ 0 (18b)

bit ≥ 0 (18c)

bi,−1, i−1, ξi,−1 given. (18d)

The expectation is now taken with respect to both the aggregate shocks as before as well

as the development of household idiosyncratic labor productivity. The Markov chain for this

idiosyncratic risk is chosen so as to approximate a realistic process for household earnings. I

therefore consider the following AR(1) formulation:

log(ξit) = −
(
σ2

2

)
(1− ρ) + ρ log(ξit−1) + εt, with εt ∼ N(0, σ2(1− ρ2)).
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Under this formulation, the unconditional mean and variance of ξit are 1 and exp(σ2) − 1

respectively. The actual Markov chain approximation is then arrived at by using the Tauchen

algorithm to create an approximate transition matrix given ρ ∈ (0, 1) – the parameter governing

the persistence of the process. The remaining free parameter σ2 governs dispersion of the

feasible approximating values (i.e. the state space) of ξit−1 around the mean value of 1.

In addition, budget constraint equation (18b) states that firm sector profits are distributed

uniformly across households. While there are various economically distinct ways one could

model the distribution of profits, I focus on the dispersion in labor income only in the baseline

case.

The assumption that the disutility of labor supply is weighted by the current labor produc-

tivity implies that labor supply choice of a household is independent of its current idiosyncratic

productivity. In the absence of this weighting, labor supply would be higher for more produc-

tive agents and lower for less productive agents without affecting the mean value of total labor

supply given the unit mean of ξit−1. The labor first order condition thus becomes:

nϕit = nϕt = (1− τ)wt

which is identical to the representative agent case of equation (4).

The problem in this case includes an explicit borrowing constraint which will typically bind

for agents with sufficiently long chains of adverse idiosyncratic shocks. The first order condition

of a household i with respect to bit therefore now takes the following form:(
cit − ξit−1

n1+ϕ
t

1 + ϕ

)−γ
= β Et

[
1 + it

1 + πt+1

(
cit+1 − ξit

n1+ϕ
t+1

1 + ϕ

)−γ]
and bit > 0 (19a)

or (
cit − ξit−1

n1+ϕ
t

1 + ϕ

)−γ
≥ β Et

[
1 + it

1 + πt+1

(
cit+1 − ξit

n1+ϕ
t+1

1 + ϕ

)−γ]
and bit = 0. (19b)

Equation (18b) as well as condition (19) generalize the equations (1b) and (2) from the repre-

sentative agent case.

Model solution. In solving the model I use the methodology of Reiter (2009) or Reiter

(2010) to incorporate the budget constraint equation (18b) and the Euler condition (19) into

the set of equilibrium equations. The relevant state variable becomes the frequency distribution

of bond holdings, denoted Dt−1.

I approximate the distribution Dt−1 by considering a fixed set of grid points for the possible

levels of bond holdings bg = {0, . . . , bmax}. Then the actual approximate distribution assigns a
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frequency for every element in the Cartesian product of the grid points bg and the state space

of the idiosyncratic labor productivity. Following Reiter (2010), any probability mass of the

distribution Dt−1 prior to the approximation that does not fall on the grid bg is attributed

to the neighboring grid points in a proportional manner. As a result, the budget constraint

equation (18b) can be replaced by the Markov chain:

Dt = P (it−1, πt, wt, nt,Πt, Ct) ·Dt−1, (20)

where the transition matrix becomes a function of the relevant aggregate and individual level

variables. In particular, the expression Ct denotes a vector of consumption function values

at the same Cartesian product of the grid points bg and the idiosyncratic risk state space.

Variables Dt−1 and Ct are defined on the same grid for simplicity.

The control variable Ct needs to be consistent with the Euler condition (19) which I ensure

by using the Endogenous Grid Method of Carroll (2006). In the present context it requires

using the next period control variables Ct+1 to calculate (where ξt−1 encodes idiosyncratic risk

levels in a way that is conformant with Ct):

Cen
t =

(
β Et

[
1 + it

1 + πt+1

(
Ct+1 − ξt

n1+ϕ
t+1

1 + ϕ

)−γ])−1/γ

+ ξt−1
n1+ϕ
t

1 + ϕ

and

bent−1 =
1 + πt

1 + it−1

(Cen
t + bg − (1− τ)(ξt−1wtnt − Πt))

where en stands for the endogenous grid. These values are then interpolated onto the ex-

ogenous grid bg, with the caveat that points falling below the borrowing constraint follow the

no-borrowing condition instead.

3 Calibration of models and benchmark steady state

In this section I calibrate the parameters of the models, first the parameters that are joint

to both RANK-BUF and HANK models and then the 2 additional parameters of the HANK

model. I then use the calibrated HANK model and its steady state supply of funds curve to

match the level and the slope of the corresponding curve in the RANK-BUF model. I also

describe additional variables of the resulting benchmark steady state, i.e. the steady state in

the absence of any shocks.
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Table 1 provides the complete calibration of the joint parameters which take mostly standard

values. I use α = 0 since capital is not considered, β = 0.94, γ = 2, and Frisch labor supply

elasticity parameter ϕ = 2. The price stickiness parameters are also standard, ε of 10 ensures

modest steady state level of profits while κ of 0.1 is consistent with prices remaining unchanged

for about 4 quarters on average in the equivalent Calvo formulation. The autoregressive TFP

parameter ρz is calibrated to 0.7.

I consider highly persistent shocks to the target level of government bonds (ρb̄ = 0.99) and

TFP (ρz̄ = 0.99) which allows me to consider, at least to first order approximation, shifts in

steady states following a shock to government target bond level. The use of highly persistent

shocks is in line with the focus on long-run shifts in government policy while the assumption

of linear approximation simplifies the analysis. I calibrate steady state government parameters

τ and b to values ensuring reasonable steady state quantity of government spending.

The five parameters of the government sector are calibrated to values used by Bayer et al.

(2019). That is, monetary policy feedback parameter θm takes the value of 1.25, interest

rate smoothing parameter ρi equals 0.8, speed of bond adjustment parameter ρb equals 0.86,

government bonds reaction to inflation parameter θfπ equals 1.5 and to revenues θfT equals

0.5.

Table 2 contains the additional HANK model parameters. These are the income shock

volatility σ, calibrated to the value of 0.6, and the income shock persistence ρ which takes the

value 0.98. The persistence value is taken from Bayer et al. (2019) whereas the income shock

volatility that I use is approximately double of the value implied by the mean risk level in their

calibration. The reason is that my simpler framework abstracts from stochastic volatility so I

make the baseline income process more risky.

The values of model variables in benchmark steady state are described in Table 3. The

resulting size of equilibrium interest rate is 0.8%.

I also construct a histogram of bond holdings by idiosyncratic risk type (Figure 1). I use

8 idiosyncratic types for the Tauchen approximation of the idiosyncratic risk process which

are then bunched by 2 in the histogram. The calibration actually results in a fairly large

proportion of households being at their borrowing constraint of 0 (approximately 33%). This

large proportion is reassuring given the large number of authors who stress the importance

of using models that are realistic along this dimension, among them for example Kaplan and

Violante (2014) or McKay, Nakamura, and Steinsson (2016).

I use these parameters together with the joint model parameters to calculate the steady state
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Table 1: Parameters joint to both RANK-BUF and HANK models.

Parameter Value Description

Parameters affecting benchmark steady state

α 0 capital share

β 0.94 discounting

γ 2 CRRA

ε 10 intermediate goods elasticity

κ 0.1 Rotemberg price adj. cost

ϕ 2 labor supply

τ 0.3 steady state taxes

b 0.6 steady state bonds

z 1.17 steady state TFP

Parameters not affecting benchmark steady state

ρz 0.7 persistence of TFP shock

ρz̄ 0.99 persistence of TFP target

ρi 0.8 interest rate smoothing

ρb 0.86 speed of bond adjustment

ρb̄ 0.99 persistence of bond target shock

θm 1.25 monetary policy inflation response

θfπ 1.5 fiscal policy inflation response

θfT 0.5 fiscal policy revenues response

Table 2: HANK model parameters.

Parameter Value Description

σ 0.6 income shock volatility

ρ 0.98 income shock persistence

Table 3: Model variables in benchmark steady state.

b, b̄ i, r z c n w g mc π y Π

0.6 0.008 1.17 0.71 0.85 1.05 0.29 0.9 0 1 0.1
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Figure 1: Distribution of bond holdings at the benchmark steady state
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supply of funds curve of the HANK model. This curve is established by starting with an interest

rate which implies a consumption function of the household. The consumption function in turn

results in a certain steady state quantity (and frequency distribution) of bonds. As higher

interest rate makes holding bonds cheaper, households will prefer larger quantity of bonds so as

to self-insure against the adverse productivity shocks – it is a well-known result that the bond

holdings would actually diverge to positive infinity for gross interest rate approaching the time

preference rate 1/β (Aiyagari, 1994).

The steady state supply of funds curve in the RANK-BUF model can be, in contrast to the

HANK model, derived by hand and the GHH assumption guarantees that it will be invariant

across steady states. The Euler condition (2) evaluated at steady state demonstrates that it

is the marginal utility of wealth holding, F ′(b), that affects the steady state supply of funds

curve in RANK-BUF model:

1 + r =
1− F ′(b)

β
.

I use here b and r to represent generic steady state value, instead of the benchmark steady

state. The fact that supply of funds curve in RANK-BUF is independent of other equilibrium

variables is no different from the standard RANK model where the gross interest rate is fixed

at 1/β in any steady state. Linearization of the Euler equation around the benchmark steady

state gives the slope of the supply of funds:

−F ′′(b)
1− F ′(b)

(bt − b) +
λt − λ
λ

=
rt − r
1 + r

+ Et
λt+1 − λ

λ
.

HANK model parameters can therefore determine F ′(b) and F ′′(b) from steady state consider-

ations. The calibration of the HANK model then implies the first derivative of function F at

the steady state bond quantity of F ′(b) = 0.05, the second one of F ′′(b) = −0.04.

The last condition that will end up affecting RANK-BUF model’s impulse responses is size

of F (b) – this can be seen from the remainder of the linearized Euler equation which reads:

−γ
c− n1+ϕ

1+ϕ
+ F (b)

[(ct − c)− nϕ(nt − n) + F ′(b)(bt − b))] =
λt − λ
λ

.

The equation shows that F (b) affects the intertemporal elasticity of substitution as a conse-

quence of the GHH assumption. In order to minimize the impact of this channel on RANK-

BUF model fluctuations I choose the benchmark F function parameters in a way that implies

F (b) = 0.

Table 4 contains the matched parameters of the representative agent models while Figure

2 shows the implied supply of funds curves. Although the curve of the RANK-BUF model is
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calibrated to be tangent to the HANK’s model at the steady state amount of bonds, while at

the same time ensuring F (b) = 0, Figure 1 shows that the resulting curvature is pretty close to

the curvature in the HANK model as well.

Table 4: Calibration of representative agent models.

RANK-BUF RANK

Parameter Value Parameter Value

ξ 0.05 β 0.99

bi 0.4

φ 0.87

Figure 2: Supply of funds curves
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4 Aggregate fluctuations

In this section I consider the responses of the economies to aggregate shocks. The size of

the shocks is normalized to imply similar output responses across the shocks in the benchmark
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specification. I begin the analysis with government shock in the flexible price limit. This setting

lets me isolate the impact of additional liquidity provided by the government debt expansion

independently from the impact of changes in household risk. I find that the RANK-BUF model

provides an excellent approximation to the HANK model in this case.

I next turn to the benchmark specification with sticky prices and consider in turn the

monetary policy shock, the government spending shock, and the TFP shock.

4.1 Flexible price limit

Figure 3 presents the government shock in the flexible limit. The target level of government

bonds is assumed to increase to 0.9 (a jump of an approximately 50%) which in the long run

results in reduced government spending given fixed revenues. In the short run, higher borrowing

allows the government to expand which crowds out consumption one-to-one in the flexible price

limit (the consumption and government spending changes in levels are mirror images of each

other). Given this, household consumption must enter an expanding path, leading to an increase

in real rate which must be accommodated by monetary policy, determining the nominal rate

and inflation. Generically speaking and given Taylor rule on nominal rate setting, an increase

in real rate is not consistent with falling inflation since nominal rates respond to inflation more

than one-to-one.

The comparison across models points to the relevance of the upward sloping supply of funds

curve. In the long run, the higher liquidity supplied by the government means higher real rates

in the HANK model resulting in higher debt service and lower government expenditures relative

to the RANK model. As such, consumption grows more, implying larger increase in the real

rates. As it turns out, the RANK-BUF model captures this mechanism exceptionally well, not

only in the long run but also in the short run.

Note that the difference in the implied real rate response on impact between RANK and

RANK-BUF or HANK is substantial, about 1% on impact and rising up to about 2% in the

long run.

4.2 The benchmark specification

This subsection evaluates responses to monetary policy shock, government shock, and the TFP.
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Figure 3: IRF to a government shock in flexible price limit
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The impulse response to a monetary policy shock under the baseline calibration is displayed

in Figure 4. The shock is modeled as a one-time transitory disturbance to the nominal interest

rate rule. This shock causes an increase in inflation and a corresponding decrease in the nominal

interest rate. The inflation increase is however attenuated by the price stickiness, i.e. the price

level does not rise as much as in the flexible price limit, inducing larger changes to the real rate.

Consumption and government spending both increase in response, although the consumption

increase lasts only 2 periods. The corresponding output growth is brought about through the

reduction in the labor demand wedge (i.e. an increase in marginal cost), increasing employment

and driving down profits.

The slight drop in output in the initial period before a change to the nominal interest is

caused by the anticipation effect of the shock and it is fairly moderate relative to the actual

output increase in the following period.

Regarding cross-model comparison, it does not reveal significant differences between the

models. For example, the elasticities of output change to changes in nominal rates are very

similar across the models. This is partly a result of small change in bonds and partly due

to transitory nature of shocks (households do not desire to change consumption much). This

conclusion appears to hold for other transitory shocks as well.

I begin the analysis of persistent shocks with a shock to the bond target level. Here again,

with sticky prices the price level is unable to rise as much as would be needed to avoid output

changes which results in positive reaction of both consumption and output. The government

impact multiplier is about 1.5, i.e. every dollar of government spending induces 1.5 dollars of

additional output in the initial period of the shock, which is fairly large. Besides allowing for

output changes, price stickiness also induces an initial divergence between the HANK model

and the RANK-BUF model (the two models were almost identical in the flexible price case) –

the initial consumption response in the HANK model is now about a single percent below that

of the RANK-BUF model.

I finally turn to the TFP shock. First of all, the representative agent models display similar

responses to each other on impact and they then they diverge from each other after a few

periods. This is a consequence of the fall in bonds (the government increases spending and
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Figure 4: IRF to a monetary policy shock
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Figure 5: IRF to a government bond issuance shock
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repays some debt) – the models would show almost identical reactions if the government bonds

reacted less to inflation and revenues.

The HANK model on the other hand behaves differently from the other two models. In the

long run, the bonds fall by less than in the RANK-BUF case but the real interest rate falls by

more – this represents a shift in the supply of funds curve downward. With a rise in productivity,

the dispersion in idiosyncratic labor income rises as well which causes the interest rate to fall

(households actually desire more bonds for self-insurance at the given real rate relative to the

original supply of funds curve). This happens despite an increase in profits which, given the

assumption of no dispersion in firm ownership, reduces idiosyncratic risk overall. The shift in

the supply of funds curve that is modeled here can therefore be considered as a lower bound

on the possible effects.

5 Conclusion

This paper used the methodological shortcut of valued bonds in the representative agent frame-

work to explicitly capture in simple terms the notion of upward-sloping supply of funds curve

familiar from the literature on idiosyncratic risk and HANK models. I subjected the models in

question to a variety of aggregate shocks in order to closely delineate the impact that upward-

sloping supply of funds have on the implied model dynamics. I was able to show that the HANK

and the RANK-BUF models indeed behave similarly for a government shock when this shock

leaves the risk that households face unchanged. This means that the liquidity enhancing role

of the government debt can indeed be well approximated by the assumption of valued bonds.

The RANK-BUF model behaves less satisfactorily when shocks change the profile of risk that

households face which I illustrated with the TFP shock. Here the HANK model implied different

responses than the two representative agent models not only in the long-run but also in the

short-run immediately on impact. Although the RANK-BUF model diverges eventually from

the RANK counterpart due to a change in the quantity of government bonds, the initial impulse

response is much closer to the RANK model than to the HANK model. This demonstrates that

the explicit analysis of risks involved in the aggregate shocks by the HANK model can imply

meaningfully different macroeconomic dynamics.
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Figure 6: IRF to a TFP shock
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A Determinacy and policy regimes

A.1 Determinacy in the benchmark specification

In this subsection I numerically investigate the issue of determinacy, i.e. the conditions for the

existence of a unique bounded equilibrium solution, with the aim of comparing the determinacy

regions across models. I start with the benchmark calibration of the models and focus on the

parameter θfT in relation to parameters θm and θfπ. I then simplify the analysis by assuming
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flexible prices – this renders the value of parameter θfT inconsequential because output (and

hence government revenues) does not react to endogenous variables in this setting.

Figure 7 shows the main results in the benchmark calibration. The models are in rows,

each time in (θm, θfT ) space while keeping θfπ at its benchmark value on the left panel and in

(θfπ, θfT ) space keeping θm at the benchmark on the right.

The regions of determinacy (denoted by red plus signs) in the plots are quite similar across

models. This level of granularity shows some less usual properties such as second degree mul-

tiplicity, i.e. not enough endogenous government stabilization, in HANK model or second

degree of no solution, i.e. too much endogenous government stabilization, in the RANK model.

See Farmer and Zabczyk (2019) for the related analysis of higher order indeterminacy in an

overlapping generations framework. The models also show some difference in the causes of

indeterminacy (i.e. multiplicity or no solution).

The benchmark calibration values of θm and θfπ – falling in the top right area for each

model – could be described as corresponding to the case of monetary dominance. Monetary

policy increases rates in reaction to elevated inflation (albeit possibly less than one to one)

whereas fiscal policy reacts to elevated inflation and revenues by reducing bond issuance and

hence government spending. This is reminiscent of the government bond valuation equation of

Woodford (1995) – fiscal policy must behave more prudently in times when monetary policy

makes debt repayment more difficult due to nominal rate increases. In the other determinacy

region, i.e. when monetary policy does not react positively to inflation, fiscal policy must

ensure price level determinacy by threatening higher bond issuance in reaction to higher revenue

streams.

Fiscal reactions to inflation and to revenues are substitutable – looking at the right panel,

stronger reaction to inflation allows for reduced reaction to revenues without losing determinacy

(the slope of the determinacy boundary is roughly negative third).

A.2 Determinacy of representative agent models in the flexible price

limit

The flexible price equilibrium can be reduced to a simple set of equations in the representative

agent case (abstracting from stochastic elements for the moment). After linearization, these
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Figure 7: Numerical analysis of determinacy regions in the models
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can be written as follows:

1 0 0 0

0 1 0 0

− F ′′(b)
(1−F ′(b))σ + 1− F ′(b) + 1 + r b− 1

(1+r)σ
1
σ
− b(1 + i) F ′(b)− 1

1 0 0 0


·


bt − b

it − i

πt+1

bt+1 − b

 =



ρb 0 −θfπ 0

0 ρi θm 0

1 + r b −b(1 + i) 0

0 0 0 1


·


bt−1 − b

it−1 − i

πt

bt − b

 ,
(21)

where

σ =
γ

c− n1+ϕ

1+ϕ
+ F (b)

.

The equations are, in order, the government bond issuance rule, the monetary policy rule,

the Euler equation, and an auxiliary definition of next period bonds. Consumption of the

households and government spending level are the 2 remaining non-constant variables, implied

by the 2 respective budget constraints.

An interesting aspect of this setup that follows from the Euler equation is mutual interde-

pendence between government bonds on the one hand and inflation on the other. This is one

difference relative to the analysis of Leeper (1991) where fiscal and monetary policies decouple

– the Euler equation in that framework is a relationship involving current and future inflation

rates only (due to the assumption of fixed consumption).

Beside the benchmark case with active monetary policy I also provide an example in Figure

9 where nominal interest rate does not adjust – setting θm = 0 and ρb = 1.1. Due to ρb > 1,

government bonds remain stable only due to offsetting reaction of price level, an example of

fiscal dominance. Inflation in this case mirrors real rate movement which jumps up on impact

and then falls either to zero for the RANK model or to about 1.5 percentage points above steady

state for HANK and RANK-BUF models. This elevated real rate then results in permanent

deflation which forces the diverging patter in government bonds (given the fiscal reaction to

inflation). As such, the actual increase in bonds is much lower than the new target in the

HANK and RANK-BUF cases. The impact of this channel is minimized in the benchmark case

as monetary policy ends up forcing the long-run inflation close to zero by raising nominal rates

in HANK and RANK-BUF models.
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Figure 8: IRF to a government shock in flexible price limit, fiscal dominance.
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