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1. Introduction

Prices of risky assets fluctuate substantially over time. Much of this variation is difficult to square

with changes in fundamentals such as dividends, rents, and corporate default rates (Shiller, 1981;

Plazzi, Torous, and Valkanov, 2010; Greenwood and Hanson, 2013). Instead, the dominant expla-

nation for asset price volatility is time variation in the discount rate – the idea that investors are

sometimes less willing to save or bear risk, eliciting a low asset price. Cochrane (2011) calls the

understanding of why discount rates vary over time “the central organising question of current

asset-pricing research”.

This paper re-examines the contribution of time varying discount rates to asset price fluctuations

by studying the co-movement of expected returns across three major asset classes – equity, housing

and corporate bonds – in long-run cross-country data. A time varying discount rate should result in

asset price variation that is different from fundamentals but common across the different classes

of risky assets. For example, if stock prices are high not because of high future dividends but

because of a low discount rate, then, other things being equal, house prices should also be high. The

importance of discount rate co-movement can be tested by running return predictability regressions

within and across asset classes (Campbell and Shiller, 1988; Fama and French, 1989). If discount rate

variation is important, high equity valuations should be followed by mean reversion and predict

low future returns – not only for stocks, but also for housing and corporate bonds.

The main contribution of this paper is to show that even though expected returns on different

asset classes vary over time, they do not co-move. Put differently, asset prices are excessively volatile

but this excess volatility is highly asset-specific, with non-fundamental asset price variation for one

asset class largely disconnected from that for the other asset classes. Figure 1 shows a preview of

this finding. It displays rolling decadal correlations between asset-price-to-fundamentals ratios for

equity, housing and corporate bonds for a broad cross-country sample covering years 1870 to 2016.

The correlation coefficients are close to zero and mostly statistically insignificant: on average, high

dividend-price ratios are not accompanied by high rent-price ratios or corporate bond spreads. In

the paper, I show that between one-half and two-thirds of the variation in these valuation ratios is

non-fundamental: i.e. attributable to predictable movements in future returns rather than cashflows.

But this non-fundamental variation is highly asset-specific, with, for example, high dividend-price

ratios predicting low future returns on equity, but not on housing or corporate bonds. Across all the

different tests and specifications, cross-asset discount rate co-movement is very much the exception

rather than the norm.

The near-absence of discount rate co-movement posits a new asset pricing puzzle with far-

reaching implications. Existing literature has focussed on explaining why the common cross-asset

discount factor – the price of risk – varies over time, putting forward a number of alternative

explanations including time-varying risk aversion (Campbell and Cochrane, 1999), disaster risk

(Barro, 2006), long-run risk (Bansal and Yaron, 2004) and intermediary risk appetite (He and

Krishnamurthy, 2013). My findings show that, to an extent, this focus on cross-asset risk factors
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Figure 1: Co-movement of discount rate proxies across asset classes
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Note: Pairwise correlation coefficients between the dividend-price ratio, rent-price ratio and corporate bond
spread – each demeaned at country level – over rolling centered decadal windows (e.g. the 1875 value covers
the window 1870–1880). Shaded areas are 95% confidence intervals.

misses the most important part of the picture: the asset-specific component of excess volatility.

Explaining this asset-specific volatility will likely require moving away from standard approaches

and the focus on cross-asset variation in macro-financial risk. I find empirical support for two such

alternative mechanisms: first, that asset-specific volatility is driven by quantities of capital moving

across segmented markets (Gabaix and Koijen, 2020; Greenwood, Hanson, and Liao, 2018); and

second, that it is driven by the volatility in the expectation formation process itself, for example

through overreaction to asset-specific news (Bordalo, Gennaioli, Ma, and Shleifer, 2020).

To study these empirical relationships in the broadest possible setting, I introduce a novel dataset

of asset prices and cashflows across all major advanced economies and risky asset classes covering

years 1870–2016. The housing and equity data come from Jordà, Knoll, Kuvshinov, Schularick, and

Taylor (2019a), and corporate bond data are from Kuvshinov (2021).1 I first test whether in this

broad setting, prices of risky assets are in fact more volatile than fundamentals. To do this, I run

predictive regressions within asset classes, testing for example whether elevated equity valuations

are followed by predictable increases in dividends (fundamentals) or falls in stock returns (discount

rates). The second step is to test whether this non-fundamental variation is correlated across asset

classes. To do this, I first study the correlations between proxies for asset-specific expected returns,

and then examine the ability of asset-specific valuations and macroeconomic risk factors to predict

returns on multiple asset classes, for example the ability of dividend-price ratios to predict future

housing returns.

I find that excess volatility is ubiquitous: all three of equity, housing and corporate bond returns

are predictable by, respectively, the dividend-price ratio, the rent-price ratio, and the bond spread.

1While the Kuvshinov (2021) paper is in preparation, a summary description of the corporate bond data is
provided in Section 3 and the Data Appendix B.
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This holds under a vast battery of robustness checks, across different time periods and under

alternative estimation techniques and return definitions. Consistent with existing estimates for the

US, a 1 standard deviation increase in the asset-specific yield forecasts 2–2.5 ppts lower real total

returns one year ahead and 6–10 ppts lower cumulative returns 5 years ahead. But contrary to

the consensus for US equities (Cochrane, 2008), cashflow growth is also robustly predictable. A

1 standard deviation higher dividend-price ratio predicts 4.8 percentage points lower year-ahead

dividend growth, and higher rent-price ratios predict low future growth in rents. Put differently,

if asset valuations are high, we can on average expect both low future returns and high cashflow

growth for the specific asset class. A Campbell and Shiller (1988) variance decomposition shows that

non-fundamental (expected return) variation is responsible for 45% of the variance in dividend-price

ratios, 65% of variance in rent-price ratios and 70% of the variance in corporate bond spreads.

The within-asset-class return predictability shows that the seminal “excess volatility” puzzle of

Shiller (1981) is a salient feature of risky asset markets across 17 advanced economies, three major

asset classes, and 146 years. But the presence of cashflow predictability makes the low correlations

between asset yields in Figure 1 more difficult to interpret: it could be the case that cashflows

co-move negatively and expected returns positively, with these two effects netting out to result

in the near-zero asset yield correlation. I show that this is not the case. To do this, I first follow

Campbell (1991) and decompose each year’s unexpected returns (the difference between the realised

return and a VAR forecast from the predictive regression) on each asset class into cashflow and

discount rate news. It turns out that, if anything, cashflows are more correlated than discount

rates: while housing and equity cashflow news display a significant positive correlation of around

0.2, the correlation coefficient between discount rate news on the three asset classes is statistically

insignificant and below 0.1. While both discount rate and cashflow correlations are higher during

world wars and equity and corporate bond discount rates are correlated in the aftermath of banking

crises, other time periods and measurement methods result in consistently low co-movement.

I test for discount rate co-movement more formally using cross-asset-class predictive regressions.

The results confirm the central finding of this paper: expected returns on different asset classes do

not co-move. Under the baseline specification, none of the cross-asset-class predictive relationships

are significant at 5% level, only one (bond spreads predicting equity returns) is significant at 10%

level, and the economic size of the effects is at most a 1 percentage point return increase following a

1 standard deviation rise in the yield, with some predictive return coefficients negative rather than

positive. Structural-break-adjusted rent-price ratios and bond spreads do show some predictive

power for future stock returns, but the R2 and economic significance of the impact is small, and

this predictive power goes away at longer horizons. This lack of cross-asset return predictability

extends to a range of alternative discount factor proxies such as consumption growth and credit

growth. I show that such macro-financial factors predict returns on individual asset classes, but not

across the three classes of risky assets. Taken together, my findings suggest that while discount rate

co-movement can sometimes be found for specific samples or time periods, the lion share of excess

asset price volatility is asset-specific.
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The extent to which expected returns lack co-movement is puzzling. In the presence of trading

and information frictions, measurement error and market segmentation, we would not expect asset

valuations or expected return proxies to co-move perfectly. But the fact that discount rates co-move

less than cashflows, and that the lack of co-movement is pervasive across a variety of time periods,

asset class pairs and testing methods is rather unexpected in light of standard theory. It suggests that

to understand the drivers of excess asset price volatility, we need to explain what drives asset-specific

rather than common variation in expected returns.

In the final part of my paper, I explore several potential candidates for such asset-specific excess

volatility: time-varying asset risk or beta, capital flows, and volatile expectations. Variation in the

quantity of risk is commonly recognised as an important driver of level differentials in expected

returns the the cross-section of stocks (Fama and French, 1993). But when it comes to time variation
in expected returns, I show that changes in the quantity of asset-specific risk over time are strongly

positively correlated. I also show that market segmentation per se is not enough to generate the

asset-specific discount rate movements: for this, we need some factors which make the discount

rates in individual asset markets more volatile than implied by consumption of individual investors.

One candidate for such excess volatility is time variation in quantities of capital supplied and

demanded on specific markets. Recent work by Gabaix and Koijen (2020) and Greenwood et al.

(2018) has shown that in the presence of segmentation, small changes in asset quantities can generate

large changes in asset prices. In my data, I show that capital inflows into the stock market –

measured as high net equity issuance – consistently predict low future stock returns, but do not

forecast any meaningful changes in housing or corporate bond returns. This is consistent with the

evidence in Gabaix and Koijen (2020), who use a granular instrumental variable method to show

that exogenous inflows of capital into the equity market can substantially increase stock prices and

hence reduce expected equity returns.

The final set of explanations concerns a set of theories which I loosely label “volatile expectations”.

The idea behind these is that information processing biases or frictions applied to asset-specific

news can, in turn, result in asset-specific excess volatility. I use the Survey of Professional Forecasters to

show that, first, forecasts of future returns on different asset classes (equities, treasuries, AAA bonds

and BAA bonds) are uncorrelated, and second, forecast updates display what I label asset-specific

overreaction. Using the methods of Coibion and Gorodnichenko (2012) and Bordalo, Gennaioli,

Ma, and Shleifer (2020), I show that individual forecaster forecasts overreact to revisions (news) in

the forecast for the specific asset class but not for other asset classes, consistent with forecasters

overreacting to asset-specific news.

My findings most closely relate to two strands of existing literature. The first strand studies

variation in expected returns, discount rates and risk premia within asset classes through return and

cashflow predictability regressions. A large literature starting with Shiller (1981) has documented

that US stock prices vary more than dividends and that stock returns are predictable (see Cochrane,

2011, for a summary). Even though the current consensus is that US equity cashflows are not

predictable and hence all the variation in the dividend-price ratio is accounted for by expected
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returns (Cochrane, 2008), a number of papers point out that dividends are predictable for different

time periods, countries and data definitions (Engsted and Pedersen, 2010; Golez and Koudijs,

2018; Chen, 2009). There is also evidence for return and rent growth predictability in markets for

residential and commercial real estate (Campbell, Davis, Gallin, and Martin, 2009; Ghysels, Plazzi,

Valkanov, and Torous, 2013; Knoll, 2017) as well as return and spread growth predictability in

corporate bond markets (Greenwood and Hanson, 2013; López-Salido, Stein, and Zakrajšek, 2017).

In sum, there is evidence that expected returns on a broad range of asset classes vary over

time, but there is a lack of consensus on the relative importance of expected return and cashflow

variation, and on the pervasiveness of return predictability beyond US equities. My study shows

that return predictability is ubiquitous and stretches to a sample covering all major asset classes, 17

advanced economies and the last 146 years. But variation in expected cashflows also matters, with

time-varying dividend growth accounting for roughly half of the variation in dividend-price ratios

in long-run cross-country data.

The second strand of the literature relates to the co-movement of expected returns and risk

premia across asset classes. Here, consensus is much more difficult to find. On the one hand,

Fama and French (1993) and numerous subsequent studies have shown that the risk factors driving

the level of expected return on individual stocks are different to those on individual bonds. But

when it comes to the focus of my study – the time variation expected returns – some initial studies

highlighted commonality, with Fama and French (1989) showing positive co-movement between

US equity and corporate bond risk premia – while others such as Shiller (1982) have emphasised

differences. More recent studies are no closer to agreement: while some emphasise common

cross-asset expected return variation derived through, for example, value and momentum (Asness,

Moskowitz, and Pedersen, 2013) or intermediary balance sheets (Baron and Muir, 2018), others show

that a common discount factor is unable to explain all the time variation in expected returns on

different assets (Haddad, Kozak, and Santosh, 2017; Giglio and Kelly, 2018).

The key question is then the following: how much of the excess volatility is common to all asset

classes and how much is asset-specific, in the broadest possible setting? My paper shows that when

we consider the most important components of risky household wealth in a long-run cross-country

sample, common factors are relatively unimportant and what stands out is a lack rather than a

presence of co-movement. Even if there is some commonality in expected return movements during

certain time periods, or for certain countries or risk factors, we need to better understand what

drives the hitherto unexplored elephant in the room – the asset class specific component of expected

return. After all, this asset-specific excess volatility is responsible for most of the variation in asset

prices across some 6,000 country-asset-class-year observations studied in this paper.
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2. Testing for discount rate co-movement

I start by setting out the framework for testing for expected return variation within and across asset

classes. Asset prices should equal the present value of expected future cashflows:

Pi,t = Et

(
∞

∑
s=1

CFi,t+s

Rs
i,t+s

)
(1)

Above, Pi,t is the price of asset i at time t, CFi,t+s are future cashflows in the form of dividends, rents

or coupon payments, and Ri,t+s is the asset-specific discount rate.

Asset-specific cashflows CFi,t can vary in an idiosyncratic manner. But to rule out arbitrage,

discount rates Ri,t on different risky assets have to move together. More specifically, the standard

“fundamental equation of asset pricing” states that expected returns on different assets should all be

proportional to a single cross-asset discount factor m:

1 = Et (mt+1Ri,t+1) (2)

The discount factor m reflects the relative price of cashflows across time and states of nature.

Existence of such a discount factor ensures that all risky assets are priced in a consistent manner,

and cashflows from one asset are not arbitrarily valued higher than those from another.2 Expected

returns across all asset classes should then move in line with m as follows:

Et (Ri,t+1) =
1

Et (mt+1)
(1 + σi), (3)

where σi = −cov(Ri, m) is an asset-specific risk correction.

The variation in asset prices can then be split into two components: asset-specific cashflows and

common cross-asset discount factor movements scaled up by the appropriate risk correction. The

consensus in the literature is that expected cashflow variation is not an important driver of asset

prices, and that the discount factor m rather than the risk correction σ drives the time variation in

expected returns (Cochrane, 2011, 2017). In light of this consensus, the absence of co-movement

in cross-asset price-to-fundamental ratios shown in Figure 1 is puzzling. Equations (1)–(3) imply

that under stable E(CFi) and σi > 0, variation in these asset yields should be driven by a common

discount factor m, and the correlations in yields on different classes of risky assets should be close

to 1.

The consensus that expected cashflow movements do not matter is primarily based on post-1926

US data. The new data in this paper pose a new challenge. In order to see whether the lack of asset

yield co-movement is, in fact, surprising, we need to first establish whether in this long-run data,

this asset yield variation is in fact driven by time-varying expected returns rather than cashflows.

2The conditions for equation 2 are, on the surface, minimal: the law of one price for m to exist and absence
of arbitrage for m > 0 (see, for example Ross, 1976).
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After documenting the extent of non-fundamental (expected return) volatility within asset classes, I

turn to testing whether it is driven by common cross-asset factors or not.

1. Testing for variation in expected returns and cashflows within asset classes The first

part of the paper checks for the relative importance of variation in cashflows and expected returns

within each risky asset class. This test is based on a log-linearised version of the present value

identity in (1) derived by Campbell and Shiller (1988):

dpi,t ≈ E
∞

∑
s=0

ρs
i ri,t+1+s −E

∞

∑
s=0

ρs
i dgi,t+1+s (4)

This equation holds for both equity and housing, with asset yield dp the log of the dividend-price

or rent-price ratio, r the log total return, and dg the log dividend or rent growth. Nozawa (2017)

shows that a version of equation (4) holds for corporate bonds, with dp the price premium (spread)

over government bonds, r the excess return over government bonds and dg the credit losses given

default.

The intuition behind equation (4) is the same as that behind equation (1): asset prices (P or

pd = −dp) can be high either because of high expected cashflows or a low discount rate. In absence

of direct data on investor expectations, this correspondence can be tested empirically by forecasting

future returns and cashflows using today’s asset yield dp (Cochrane, 2008; Nozawa, 2017; Campbell

et al., 2009). I do this by running the following predictive regressions:

ri,j,t+1 = βi,j,1 + βi,2dpi,j,t + ui,j,t (5)

dgi,j,t+1 = γi,j,1 + γi,2dpi,j,t + ei,j,t, (6)

The regressions are run separately for each asset class i using a panel of 17 countries j across the

period t = {1870, 2015}. For corporate bonds, I additionally run a regression of future spread

growth – a proxy for excess return – on today’s spread, which helps avoid some of the measurement

error present in the corporate bond return series. For the US, I also study the relationship between

future corporate bond default rates (which proxy for dg) and today’s spread.

If expected return variation is an important driver of asset prices, the βi,2 coefficient on dp should

be positive and significant. If expected cashflow variation is important, the γi,2 coefficient should

be negative and significant. If both expected returns and cashflows matter, we can assess their

relative importance by estimating the discounted sums of expected future returns E
∞
∑

s=0
ρs

i ri,t+1+s and

cashflows E
∞
∑

s=0
ρs

i dgi,t+1+s in equation (4). To do this I again follow the standard procedure in the

literature and estimate a constrained VAR in returns r, cashflows dg and valuations dp, and use the

long-run VAR forecasts of these variables to calculate the corresponding discount rate and cashflow

news components of (4) (see, for example, Golez and Koudijs, 2017; Campbell, 1991, and a more

detailed descirption of the method in Appendix C.2). After computing these forecasts, I calculate
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the proportion of variation in dp that is explained by future expected returns and cashflows.

2. Testing for co-movement in expected returns across asset classes The current consensus

in the literature is that time-varying discount rates are a key driver of variation in asset prices. If

this is the case, expected return variation should not only be an important driver of asset valuations

– in terms of a high discount rate news variance share in the Campbell-Shiller decomposition in (4) –

but it should also be common across the different risky asset classes. From equation (3), expected

returns on any two risky assets should be proportional to a common discount factor m, such that

expected return on asset i is equal to the expected return on asset k times the ratio of the two assets’

risk corrections:

Et (Ri,t+1) = Et (Rk,t+1) ∗
1 + σi

1 + σk
(7)

I test for the extent to which expected returns across asset classes co-move in two steps. First,

instead of correlating asset valuations as in Figure 1, I separately correlate the discount rate and

cashflow news estimates from the VAR constructed following Campbell (1991), as described in

Appendix C.2. I then study whether discount rate news on different asset classes strongly positively

correlated, and whether discount rate news are more or less correlated compared to the asset-specific

cashflow news.

Second, I run cross-asset predictive regressions where I use valuations of asset k1 and k2 (e.g.

housing and corporate bonds) to predict returns on another asset class i (e.g. equities):

ri,j,t+1 = βi,j,1 + βk1 6=idpk1,j,t + βk2 6=idpk2,j,t + ui,j,t i = {eq, hous, bond} (8)

If expected returns are driven by a common cross-asset discount factor m – for example relating to

macro-financial risk, as in most of the prominent macro-finance theories – the coefficients βk should

all be positive and significant, and – as long as the coefficients are standardised or asset-specific risk

corrections are similar – be similar in terms of magnitude.

Asset-specific dps could, however, be a poor proxy for the cross-asset discount factor m. For

example, Lettau and Ludvigson (2002) show that the consumption-wealth ratio may be a better

proxy for the macro-financial risk factor than the dividend-price ratio. In light of this, I also test

whether alternative proxies for m predict future returns across all three asset classes in the right

direction by running the following set of regressions for each asset class:

ri,j,t+1 = βi,1 +
M̃

∑̃
m=1

βm,im̃j,t + ei,t i = {eq, hous, bond}, (9)

Above, m̃ denotes discount factor proxies relating to, for example, consumption and balance sheet

strength of financial intermediaries. Cross-asset expected return co-movement would, in this case,

mean that some macro-financial factor m̃ predicts returns on all three asset classes in the right

direction, with high risk corresponding to high future returns.
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If there is within-asset class return predictability but no cross-asset-class return predictability,

this means that expected returns vary over time but do not co-move. Consequently, much expected

return variation and the associated excess volatility is then asset-specific, and not driven by a

common cross-asset risk factor.

3. Long-run data on cross-asset yields, returns and cashflows

There is substantial debate in the literature about how much return predictability exists within

asset classes, and whether cross-asset excess volatility can be explained by a single discount factor

(Cochrane, 2008; Goyal and Welch, 2008; Asness et al., 2013; Haddad et al., 2017). One reason for

these disagreements is that findings often depend on a specific data samples used – with results from

the recent US period arguably not applicable to broader cross-country data (Chen, 2009; Engsted

and Pedersen, 2010) – or are imprecise even for a relatively long sample of data (Stambaugh, 1999).

To ensure my findings are accurate and representative, I make use of new long-run cross-country

data covering asset yields dp, cashflows dg and returns r on the three major risky asset-classes:

equity, housing and corporate bonds. The data are annual, and cover 17 advanced economies over

the period 1870 to 2016. Appendix Table A.1 summarises the data coverage by country and asset

class. A brief description of the sources follows below.

Equity The data consist of total returns, dividends, and dividend-price ratios of listed equities, all

taken from Jordà et al. (2019a), with the addition of a new data series for Canada. The return, price

and dividend data mostly consist of value-weighted all-share indices. The dividend-price ratio is

computed as dividend income over the course of the year in proportion to the year-end share price.

Returns are the sum of capital gain and dividend income, in proportion to previous year’s price,

net of inflation. Cashflows are measured as dividend growth in a given year in excess of inflation.

Chen (2009) shows that allowing dividends to be reinvested within the year can bias the predictive

coefficient on dividend growth towards zero by making it affected by predictable return variation.

To guard against this bias, my dividend growth figures generally refer to non-reinvested dividends.

Housing The data consist of total returns, rents, and rent-price ratios for residential real estate, all

taken from Jordà et al. (2019a). The return, price and rent data are constructed to, wherever possible,

cover both owner occupiers and renters, cover the national housing stock, and adjust for quality

changes, maintenance costs, depreciation and other non-tax housing expenses. The rent-price ratio

is calculated as net rent received over the course of the year in proportion to the house price. Total

return is the sum of capital gain and rental income, and cashflows are measured as rental growth,

both net of inflation. For more details on the sources and accuracy checks for the housing and equity

data, see Jordà et al. (2019a).
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Table 1: Risky asset returns, cashflows and yields

Panel 1: Real total returns

Equity Housing Corporate bonds
Mean 7.08 6.95 3.00

Standard deviation 22.30 9.97 9.71

Geometric mean 4.78 6.51 2.53

Excess return over bills 6.49 6.49 2.17

Panel 2: Cashflows

Real dividend growth Real rent growth Corporate default rate
Mean 3.55 1.24 0.99

Standard deviation 29.08 7.80 1.51

Panel 3: Asset yields

Dividend-price ratio Rent-price ratio Corporate bond spread
Mean 3.86 5.06 1.05

Standard deviation 1.69 1.81 1.13

Observations 1506 1506 1506

Note: Pooled sample of 17 countries, 1870–2016. All figures are in percentage points. The corporate default
rate is for the US only and measures the par value of bonds in default relative to total.

Corporate bonds Kuvshinov (2021) introduces a dataset of yields, spreads, and holding period

returns on bonds issued by private sector creditors, targeting 10-year maturity. The data cover

all private fixed-rate bonds traded on the secondary market. To ensure appropriate coverage, in

some cases these are supplemented by issue yields and data from over the counter markets. The

data exclude foreign bonds, foreign currency bonds, bonds with explicit government guarantees,

and – when separately identifiable – excludes mortgage bonds issued by credit institutions or

special purpose vehicles, and includes bonds issued by non-financial corporations backed by real

estate. The spread is the yield-to-maturity differential vis-a-vis 10-year government bonds, and the

return is the 1-year holding period return. Most of the corporate bond data were constructed from

primary sources, by aggregating yields and returns on individual bonds traded on the domestic

stock exchange. Appendix B provides further detail on these data.

The inclusion of countries other than US allows me to test whether the return predictability

prevalent in the US market (Cochrane, 2008) or the dividend growth predictability documented for

a number of other markets (Engsted and Pedersen, 2010; Golez and Koudijs, 2018) are the more

prevalent feature of the data. The inclusion of housing and corporate bonds allows me to study the

excess volatility within these two less explored risky asset classes, and to ultimately assess the degree

of cross-asset co-movement of expected returns. Including three rather than two risky asset classes

also allows me to evaluate whether discount rate co-movement is only present or absent between

certain asset class pairs, or is a more general feature of the data. Finally, for the purpose of this

10



study I focus on risky assets with positive risk premia, and abstract from movements in convenience

yields, which means that I do not include government bonds in the study (Table 9, however, shows

that the government bond risk premium – the term spread – also has little cross-asset predictive

power).

Table 1 summarises the main features of the data. Panel 1 shows that three the assets earn a

positive risk premium and exhibit high volatilities, and can therefore be classified as risky. Returns

on housing and equity are similar at around 7% p.a., while those on corporate bonds are lower at

around 3% p.a. but still substantially above the bill rate. Panel 2 shows that cashflows on these

assets are also volatile and it is therefore not a given that variation in the asset yield dp primarily

reflects expected returns. Panel 3 of Table 1 shows that asset yields do vary over time but are

less volatile than realised returns and cashflows. This is to be expected because yields reflect ex

ante expected movements in smoothed future returns and cashflows rather than their one-year

realisations. At the same time, these yield measures display substantial variability of 1–2 ppts

p.a.. The next section investigates whether this variability in asset yields relates to systematically

predictable future movements in returns and cashflows.

4. Return predictability within asset classes

Are swings in risky asset prices driven by time varying fundamentals, or non-fundamental factors

such as discount rates? If financial volatility is purely fundamentals-driven, the lack of co-movement

between asset valuations in Figure 1 simply corresponds to idiosyncratic cashflows, and is not in

itself puzzling. As a first pass of answering this question, I follow Shiller (1981) and compare the

variation in observed asset prices with that of counterfactual “fundamental prices” P∗i,t. For housing

and equity, these equal the constant-discount-rate present value of future cashflow for the specific

asset i from year t onwards:

P∗i,t =
∞

∑
s=1

R−s
i CFi,t+s, (10)

where the discount rate Ri is equal to the average asset-specific rate observed in the data, Ri =

1/(1 + dpi). For corporate bonds, I compute the implicit default premium by regressing the bond

spread on 15-year ahead defaults, and using the predicted spread value from that regression.

Figure 2 shows the corresponding observed asset price or spread (solid red line) and the

present value of fundamentals (dashed black line). As in Shiller (1981), I detrend real prices using an

exponential trend, and set both observed and fundamental prices to equal 100 on average throughout

the sample. This benchmarking effectively fixes cashflow growth beyond the end of the sample to a

rational expectations benchmark which equates averaged observed and fundamental asset prices

but as also shown in Shiller (1981), changing these benchmarking or end-point assumptions only

affects the trend and not the volatility comparisons. The equity and housing data are an unweighted

average of 17 countries and corporate bond data cover the US only with long-run default data

sourced from Giesecke, Longstaff, Schaefer, and Strebulaev (2014).
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Figure 2: Risky asset prices and fundamentals
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Note: The equity and house price comparison follows Shiller (1981). Real equity and house prices are
unweighted averages of the 17 countries in the sample, detrended. The present value of cashflows is the
discounted sum of dividends or rents between year t and 2015, discounted at constant rate 1/(1 + dp), where
dp is the long-run average rent-price or dividend-price ratio. Terminal value of discounted cashflows is set to
equal the long-run average between 1870 and 2015. The compensation for future defaults is constructed by
regressing spreads on a constant and the 15-year ahead default rate, and using the predicted value of this
regression.

Prices of all three risky assets fluctuate much more than fundamentals. Even though the

observed and fundamental series do track each other somewhat over the long run – showing a

U shape reminiscent of the advanced-economy wealth-to-income ratio trend identified by Piketty

and Zucman (2014) – observed prices and spreads also display substantial short- and medium- run

deviations from their fundamental values. The question then becomes: is there something systematic

about this non-fundamental variation in asset prices? Put differently, can we use today’s asset yields

to predict future mean-reversion via returns, or fundamental-based cashflow movements?

To answer these questions, Table 2 presents the results of predictive regressions using today’s

asset yields to forecast year-ahead returns and cashflow growth within each asset class, as specified

in equations (5)–(6). The numbers in the first two columns correspond to the predictive coefficients

β2 in (5) and δ2 in (6) for equities, columns 3 and 4 present the same numbers for housing, column 5

presents the return β2 for corporate bonds and column 6 presents the β2 for an alternative bond

return proxy – the spread growth. To make results comparable across asset classes, I standardise all

the coefficients in columns 1–5 to a one standard deviation increase in the asset yield. Column 6

displays the predictable percentage point change in the spread 1 year ahead following a 1 percentage

point higher spread today. To help interpret the coefficients on log returns, the row titled “percentage

point impact” shows the impact expressed in terms of percentage points (log return change times

mean return in the sample times 100). The results for corporate bond cashflow predictability

regressions, for the US only, are shown in the Appendix Table A.2.

Returns on all three risky asset classes are predictable. Column 1 shows that a one standard
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Table 2: Predictability of real returns and cashflows within asset classes

(1) (2) (3) (4) (5) (6)

Equity Housing Corporate bonds

rt+1 dgt+1 rt+1 dgt+1 rt+1 ∆spreadt+1

Dividend-price ratio 0.024*** -0.048***
(0.009) (0.010)

Rent-price ratio 0.021*** -0.007**
(0.003) (0.003)

Bond spread 0.021*** -0.287***
(0.006) (0.039)

Percentage point impact 2.49 -4.84 2.19 -0.74 2.19 -0.29

R2
0.014 0.043 0.049 0.010 0.044 0.139

Observations 2290 2288 1816 1816 1906 1912

Note: OLS regressions with country fixed effects. Coefficients in columns 1–5 are standardised to a 1 standard
deviation increase in the predictor variable; column 6 is not standardised. Predictor (x) variables in rows are
in logs for the dividend- and rent-price ratios, and percentage points for the bond spread. Dependent (y)
variables in columns. r is the log real total return, dg is log real dividend or rental growth, ∆spread is the
percentage point change in the corporate bond spread. Percentage point impact is the resulting percentage
point change in return or cashflow growth after a one standard deviation increase in the asset yield (x
variable). All variables are demeaned at the country level. Driscoll-Kraay standard errors clustered by country
and year and adjusted for autocorrelation in parentheses. *: p < 0.1 **: p < 0.05 ***: p < 0.01.

deviation increase in the dividend-price ratio – equivalent to about 1.5 percentage points – predicts

2.5 percentage point higher real equity returns one year ahead (the regression coefficient 0.024 times

the mean gross return of 1.048 and converted to percentage points through multiplying by 100).

Returns on housing and corporate bonds (columns 3 and 5) are also predictable, with similarly-sized

effects to to those for equities. Column 6 further shows that this return predictability is associated

with substantial mean reversion: a 1 percentage point higher corporate bond spread predicts a

0.287 percentage point spread decline 1 year ahead, with almost one-third of these elevated spreads

mean-reverting within a year.

Not only returns, but cashflows are also predictable, with the effect being strongest for the

equity market. A 1 standard deviation increase in the dividend-price ratio predicts 4.8 percentage

points lower real dividend growth 1 year ahead. A similar increase in the rent-price ratios, however,

only forecasts 0.7 percentage points lower growth in rents, and the Appendix Table A.2 shows that

corporate bond yields in the US are only weakly associated with future default rates, consistent with

the findings of Giesecke et al. (2011). The evidence for return predictability mirrors the consensus

for long-run data on US equities in Cochrane (2008) and 400 years of evidence for a global financial

center in Golez and Koudijs (2018). Contrary to the consensus for the US equities however (Cochrane,

2008), I show that cashflows are also predictable across a broad range of countries and asset classes.

The reasons why I find dividend growth predictability are that my sample covers more countries

and longer time periods – including times of disasters and substantial macroeconomic and cashflow
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Table 3: The relative importance of time varying discount rates and cashflows

(1) (2) (3)
Equity Housing Corporate bonds

The share of total variation in asset valuations explained by:

Discount rate news 45 65 70

Cashflow news 55 35 30

Note: Ratios of discount rate and cashflow news variance to total dividend-price, rent-price and bond spread
variance, per cent. Discount rate news refer to predictable movements in future returns (or spread growth for
bonds), and cashflow news to predictable movements in future cashflows (for bonds, a residual). Equity and
housing shares are estimated using a constrained VAR, and corporate bond share is estimated using OLS
forecasts of up to 10 years ahead.

volatility – and does not reinvest dividends or rents, which tends to bias down the cashflow growth

coefficients as discussed by Chen (2009). The evidence for cashflow predictability is consistent

with studies featuring longer time horizons (Golez and Koudijs, 2018) and other countries (Engsted

and Pedersen, 2010). My results show that in the broad long-run perspective, dividend growth

predictability is ubiquitous and is much stronger than that for cashflows in other asset classes such

as rents. Taken together, the results in Table 2 show that the asset price variation in Figure 2 is

driven by both time-varying cashflows and non-fundamental factors (expected returns).

Table 3 shows the relative importance of expected return (discount rate news) and cashflow

news variation for each asset class. Consistent with the Campbell-Shiller identity in equation (4),

the discount rate and cashflow news shares are calculated as, respectively, ratios of the variance in

long-run cashflow and return forecasts
∞
∑

s=0
ρs

i rt+1+s and
∞
∑

s=0
ρs

i dgt+1+s in proportion to the variance

of the asset yield dpi. For housing and equity, these long-run forecasts are estimated by iterating a

one-year forecast within a VAR of returns, cashflow growth and yields (as, for example, in Golez

and Koudijs, 2017, described in more detail in Appendix C.2). For corporate bonds, the discount

rate news share is the ratio of variance in predictable future spread growth (summed over the future

10 years and discounted by ρ) to the total variance of the spread.

For equities, roughly half of the variation in the dividend-price ratios is accounted for by future

returns. The discount rate news share is higher for housing, at 65%, and highest for corporate bonds

at 70%. Even though realised equity returns are much more volatile than those on housing and

corporate bonds (Table 1), much of this volatility can be attributed to future dividend movements

rather than mean-reversion through time-varying expected returns. All three asset classes are

excessively volatile, but this non-fundamental volatility becomes more important as we move from

the relatively liquid and well-informed equity market to the more frictional housing and corporate

bond markets. The importance of discount rate news in the corporate bond market is consistent

with existing literature for the US which emphasises the importance of mean-reverting sentiment

swings in driving credit spread movements (Greenwood and Hanson, 2013; López-Salido et al.,
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Table 4: Within-asset-class predictability: alternative specifications

(1) (2) (3) (4) (5) (6) (7)

Baseline average
5-year

returns
Excess VAR Post-1950 breaks

Structural
Effects
Year

Equity:

rt+1 0.024*** 0.018** 0.017** 0.029*** 0.030*** 0.037*** 0.028***
(0.009) (0.007) (0.008) (0.005) (0.009) (0.007) (0.006)

dgt+1 -0.048*** -0.033*** -0.040*** -0.051*** -0.062*** -0.062***
(0.010) (0.005) (0.009) (0.010) (0.010) (0.013)

Housing:

rt+1 0.021*** 0.020*** 0.025*** 0.021*** 0.018*** 0.020*** 0.022***
(0.003) (0.003) (0.005) (0.002) (0.005) (0.005) (0.003)

dgt+1 -0.007** -0.013*** -0.007*** -0.006 -0.009** -0.007**
(0.003) (0.004) (0.002) (0.005) (0.004) (0.003)

Corporate bonds:

rt+1 0.021*** 0.012** 0.028*** 0.011** 0.023*** 0.018***
(0.006) (0.005) (0.005) (0.004) (0.004) (0.003)

∆spreadt+1 -0.287*** -0.131*** -0.402*** -0.546*** -0.284***
(0.039) (0.014) (0.045) (0.050) (0.037)

Note: Predictive coefficents on the log dividend-price ratio for equity, log rent-price ratio for housing, and
percentage point spread for bonds. Dependent (y) variables in rows. Specifications in columns. Coefficients
in the top 5 rows are standardised to a 1 standard deviation increase in the predictor (x) variable; bottom row
is not standardised. rt+1 is log real total return; dgt+1 is log real dividend or rent growth, ∆spreadt is the
percentage point change in the corporate bond spread. Baseline is OLS with country fixed effects. 5-year
averages regresses average return, cashflow or spread growth in years t + 1 to t + 5 on the yield at t . Excess
returns are net of the government bond return. VAR estimates the return and cashflow regressions jointly
subject to present value moment constraints. Structural breaks demean the predictors (x variables) by both
time period and country using the Bai and Perron (2003) procedure. Year effects has both country and year
fixed effects. Standard errors clustered by country-year and adjusted for autocorrelation in parentheses. *:
p < 0.1 **: p < 0.05 ***: p < 0.01.

2017).

Table 4 shows that these findings hold under a variety of different estimation methods and

across different time periods. Again, the coefficients in rows 1–5 are standardised to a one standard

deviation increase in the yield, with the percentage point impact being roughly 100 times the

reported coefficient, and the bottom-row coefficient corresponds to a 1 percentage point change

in the spread. The 5-year-ahead average growth coefficients in column 2 are similar to the year-

ahead coefficients in column 1, which means that the cumulative predictable return and cashflow

movements become substantially larger over time. For example, a 1 standard deviation increase in

the dividend-price ratio corresponds to 9.4 percentage points higher cumulative stock returns and

16.5 percentage points lower cumulative dividend growth.

Excess return predictability (column 3) is also similar to that for total returns, meaning that

much of the expected return variation corresponds to risk premium rather than safe rate movements.

Estimating the return and cashflow predictive regressions jointly in a VAR (column 4) leads to
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similar results. Return and spread growth predictability also becomes stronger after 1950 (column

5) and after adjusting the asset yield (predictor) variables for structural breaks as suggested by

Lettau and Van Nieuwerburgh (2008) in column 6. Adding year fixed effects to control for common

cross-country variation in yields, returns and cashflows (column 7) leaves results little changed

relative to baseline.

Appendix Table A.3 shows the predictability results for individual countries. Return predictabil-

ity for housing and corporate bonds, and dividend growth predictability, is pretty much ubiquitous.

For equity returns, predictive coefficients are generally of similar size to baseline but are statistically

insignificant in some countries due to the relatively lower power of within-country samples. How-

ever, if we adjust the country data for structural breaks as in the Appendix Table 2, the predictive

coefficients on returns are significant in almost every country across the three asset classes. Note that

further adjusting the data to exclude periods of rent control which may lead to non-market-induced

movements in house prices and rents, using the classification in Knoll (2017), also leaves both

housing returns and rents predictable (results available from author upon request).

Return predictability is ubiquitous, and the Shiller (1981) excess volatility puzzle extends to the

near-universe of advanced economies and risky asset classes studied in this paper. Risky cashflows

are, however, also predictable, especially when it comes to equities. Because asset yields reflect

future cashflows as well as discount rates, some of the lack of co-movement in asset yields shown

in Figure 1 could correspond to asset-specific cashflows rather than expected returns. The next

section tests for the cross-asset co-movement of expected returns directly by studying correlations of

discount rate news and cross-asset-class predictability regressions.

5. Discount rate co-movement across asset classes

5.1. Discount rate correlations

Most theories in macro-finance attribute expected return variation to a common cross-asset discount

factor typically linked to the evolution of macro-financial risk (e.g. consumption volatility, risk

aversion, or disaster risk). If this is the case, expected returns (or discount rates) on different asset

classes should not only vary over time, but also be strongly positively correlated. Cashflow news,

on the contrary, may be asset-specific and do not need to display such positive correlation. Since

both returns and cashflows are predictable, the fact that asset yields do not co-move (Figure 1) could

be attributable to the highly asset-specific nature of cashflow shocks.

To see if this is the case, we can extract the cashflow and discount rate news components of the

asset yield using predictive regressions and the method of Campbell (1991), which uses the VAR

forecast to split the unexpected return at time t, ri,t −Et−1(ri,t), into future discount rate and future

cashflow innovations, estimated as changes in the corresponding long-run return and cashflow

growth forecasts E
∞
∑

s=0
ρs

i ri,t+1+s and E
∞
∑

s=0
ρs

i dgi,t+1+s (Appendix C.2 provides further detail). Table

5 then correlates these discount rate and cashflow news components separately in the pooled
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Table 5: Correlations of discount rate and cashflow news across asset classes

(1) (2) (3) (4) (5)

Discount rate news Cashflow news

Equity Housing Corporate
bonds

Equity Housing

Equity 1 1

Housing 0.05 1 0.22*** 1

Corporate bonds 0.04 0.05 1

Note: Pairwise correlation coefficients. Discount rate and cashflow news for equities and housing are estimated
as the innovations to the present value of, respectively, expected future returns and cashflows for each asset
class, where expectations are computed using a VAR forecast. Discount rate news for bonds are the change in
the bond spread. *: p < 0.1 **: p < 0.05 ***: p < 0.01 , using country-year clustered autocorrelation-adjusted
standard errors.

cross-country sample. Note that because of the lack of corporate bond default data, I only compute

the cashflow news correlation for equity and housing, and take the whole of the bond spread

innovation to correspond to discount rate news.

It turns out that, if anything, discount rate news are not only uncorrelated across asset classes,

but also less correlated than cashflow news. Table 5 columns 1–3 show that the discount rate news

correlation across asset class pairs is below 0.1 and not statistically significant, whereas the cashflow

news correlation in column 4 is a statistically significant 0.23. Figure 3 further checks how the

discount rate news correlation has evolved over time by computing rolling 10-year correlations

across asset class pairs in a way similar to Figure 1. Asset-specific discount rates are even less

correlated than the raw valuation ratios shown in Figure 1. The correlation is also more stable over

time and across asset classes, staying at around zero throughout the majority of the sample period

and only spiking during the two world wars for some of the asset class pairs. The fact that discount

rate co-movement is present during wartime suggests that cross-asset factors such as disaster risk

can affect expected returns, but that these influences are largely confined to the disaster periods

themselves.

Table 6 checks for presence of discount rate and cashflow news co-movement across different

discount rate measures and time periods. Column 1 reports the baseline results from Table 5, and

Column 2 correlates 3-year moving averages of discount rate and cashflow news to smooth over

timing idiosyncracies across asset classes: for example, housing transactions may take longer to

complete, generating a delay in the house price response to the discount rate innovation. Column 3

deals with the possible sluggish reaction of housing returns to discount factor innovations by letting

it react one year later than all other variables. The correlations remain low. Column 4 computes

the discount rate and cashflow news using a VAR where the asset yields are adjusted for structural

breaks. Even though return and cashflow predictability is much stronger under this specification

(see Table 4), cross-asset-class discount rate news remain uncorrelated.
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Figure 3: Co-movement of cross-asset discount rate news through time
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Note: Pairwise correlation coefficients between the discount rate news on equity, bonds, and housing over
rolling decadal windows (e.g. the value for 1875 if the correlation over the window 1870–1880). Shaded areas
are 95% confidence intervals, using country-clustered standard errors. Discount rate news correspond to
changes in the present value of predicted future returns for housing and equity, and as the change in the
spread for bonds.

Table 6: Discount rate and cashflow news correlations, alternative specifications

(1) (2) (3) (4) (5) (6)

Baseline 3-year MA housing lag
3-year MA,

breaks
Structural Wars Crises

Banking

Discount rate news:

Equity, housing 0.05 0.11 0.15** 0.01 0.28* 0.06

Equity, corporate bonds 0.04 0.08* 0.08* 0.04 0.08* 0.24**
Housing, corporate bonds 0.05 0.08 0.09 0.01 0.11*** 0.11

Cashflow news:

Equity, housing 0.22*** 0.34*** 0.25*** 0.18*** 0.59*** 0.02

Note: Pairwise correlations. 3-year MA correlates 3-year moving averages of discount rate and cashflow
news. 3-year MA, housing lag specification correlates housing data at t to t+2 with equity and bond data
at t-1 to t+1, effectively allowing for a lagged housing response. Structural breaks uses discount rate and
cashflow news obtained from VAR where the predictor variables are adjusted for structural breaks. Wars only
considers periods during world wars. Banking crises consdiers periods within 3 years of the start of the crisis.
*: p < 0.1 **: p < 0.05 ***: p < 0.01 , using country-year clustered autocorrelation-adjusted standard errors
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Table 6 column 5 shows that correlations are generally larger during world wars, consistent

with the visual evidence in Figure 3, though cashflows news remain more strongly correlated than

discount rates even during wartime. Column 6 instead looks at correlations during the three years at

the start of a systemic banking crisis, using the narrative definition of Schularick and Taylor (2012).

Consistent with Muir (2017), I find that both bond spreads and dividend-price ratios tend to increase

in crises, generating some positive discount rate news correlation. However the correlation remains

low owing to the fact that even though spreads and dividend-price ratios increase on average, in

many crises one of these asset classes is much more affected than the other. Consistent with findings

of Jordà et al. (2019b), the housing discount rate remains relatively uncorrelated with both bonds

and equities even during crises. Overall, discount rate co-movement is weak and is confined to

specific time periods such as world wars and, to a lesser extent, banking crises.

Appendix Table A.6 shows that the low discount rate correlation and high cashflow correlation

are also the predominant feature of the data within individual countries, including the US. Consistent

with findings of Fama and French (1989), US corporate bond and equity discount rate news do

show some positive correlation, especially after 1950 (Table A.7. But as with the wartime and crisis

periods shown in Table 6, this positive correlation is not representative of the broader patterns in

the data. All other countries show lower – and some negative – correlations, and the equity and

housing discount rate correlation in the US is close to zero.

5.2. Cross-asset return predictability

The extent of expected return co-movement can be tested more formally within the framework of

cross-asset predictive regressions. In principle, valuations of one asset class could predict returns on

other asset classes even if the cross-asset valuations are themselves uncorrelated, thereby capturing

some co-movement in expected return that is not seen in the simple correlations studied in Section

5.1. Table 7 tests for the presence of cross-asset return predictability in the data. As in Table 2, each

column corresponds to a different asset class, and each row – to a different predictor; but this time

the predictors correspond to yields on other asset classes. As before, the predictors are standardised

to a one standard deviation increase, in order to make results comparable across assets and to the

within-asset-class regressions in Table 2. In each column, rt+1 corresponds to the one-year-ahead log

total real return, and rt+1,t+5 – to the five-year-ahead average return.

Consistent with the discount rate correlation evidence in Figure 3 and Table 5, the estimates in

Table 7 show that there is very little cross-asset return predictability in the data. Although valuations

of some asset classes are positively correlated with returns on other asset classes, most of these

correlations are statistically insignificant and economically small. For example, high rent-price ratios

are positively correlated with one-year-ahead equity returns (column 1), but negatively correlated

with five-year-ahead equity and corporate bond returns (columns 2 and 6). The predictive R2 is also

small and much lower than that for the within-asset-class predictive regressions in Table 2. Based

on this evidence, there is very little cross-asset discount rate co-movement in the data.
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Table 7: Predictability of returns across asset classes

(1) (2) (3) (4) (5) (6)

Equity Housing Corporate bonds

rt+1 rt+1,t+5 rt+1 rt+1,t+5 rt+1 rt+1,t+5

Dividend-price ratio -0.000 0.000 0.011 0.007

(0.004) (0.003) (0.008) (0.007)
Rent-price ratio 0.010 -0.004 0.000 -0.005

(0.008) (0.006) (0.005) (0.004)
Bond spread 0.010* 0.003 -0.001 0.001

(0.006) (0.005) (0.002) (0.002)
R2

0.004 0.002 0.000 0.001 0.012 0.015

Observations 1527 1454 1503 1414 1507 1413

Note: OLS regressions with country fixed effects. All coefficients are standardised to a 1 standard deviation
increase in the predictor variable. Dependent (y) variables in columns. rt+1 is the 1-year ahead log real total
return, and rt+1,t+5 is the average 5-year ahead log real total return on the specific asset class. Predictor (x)
variables are the yields on other asset classes. Standard errors clustered by country-year and adjusted for
autocorrelation in parentheses. *: p < 0.1 **: p < 0.05 ***: p < 0.01.

Table 8 tests for presence of cross-asset return predictability across different regression spec-

ifications, return definitions and time periods. The columns correspond to different regression

specifications and rows – to different asset classes and predictors. The top two rows show the

regression coefficients from predicting equity returns with housing and corporate bond valuations,

the next two – from predicting housing returns with equity and bond valuations, and the bottom

two – from predicting corporate bond returns with equity and housing valuations. Even under these

alternative specifications, cross-asset predictability is rare and the cross-asset predictive regressions

sometimes carry the wrong sign (e.g. high dividend-price ratios predicting low rather than high

future excess housing returns in column 3).

Table 8 column 2 conditions on the own asset valuation (e.g. the dividend-price ratio for equities)

in the regression, in which case even the borderline cross-asset predictability shown in Table 7

disappears. Cross-asset predictability is weak or goes in the wrong direction for excess returns

(column 3) and the post-1950 sample period (column 4). Adjusting the data for structural breaks

(column 5) does result in some cross asset predictability, improving the forecasting power of the

rent-price ratio and the bond spread for future equity returns. But even this predictability almost

disappears at the 5-year ahead horizon (column 6).

Still, the presence of some cross-asset predictability under the structural break specification calls

for a further investigation. How widespread is this predictability across asset class pairs and time,

and how does it compare in strength to the within-asset predictability? To assess this, I estimate

the predictable change in returns following a one standard deviation increase in the break-adjusted

yield on the own asset class, and yields on other asset classes, at horizons h = 1 to 10 years ahead,

using the regressions in (5) and (8) but replacing the return variable with the cumulative return
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Table 8: Predictability of returns across asset classes: alternative specifications

(1) (2) (3) (4) (5) (6)

Baseline Conditional returns
Excess

1950

Post
breaks

Structural
5-yr ahead

Breaks,

Equity rt+1:

Rent-price ratio 0.010 0.003 0.011 0.010 0.028*** 0.010*
(0.008) (0.008) (0.009) (0.012) (0.008) (0.005)

Bond spread 0.010* 0.007 0.022** 0.010 0.019*** 0.008**
(0.006) (0.006) (0.009) (0.008) (0.007) (0.004)

Housing rt+1:

Dividend-price ratio -0.000 -0.003 -0.014* -0.001 -0.003 -0.000

(0.004) (0.004) (0.008) (0.005) (0.004) (0.002)
Bond spread -0.001 -0.003 0.011 -0.000 -0.004** -0.002

(0.002) (0.002) (0.009) (0.003) (0.002) (0.001)

Corporate bond rt+1:

Dividend-price ratio 0.011 0.009 0.001 -0.001 0.011*** 0.006

(0.008) (0.008) (0.002) (0.005) (0.004) (0.004)
Rent-price ratio 0.000 -0.001 0.001 -0.006 0.013** 0.000

(0.005) (0.005) (0.002) (0.005) (0.006) (0.005)

Note: Predictive coefficents of log real total returns on one asset class at t + 1 regressed on the yields of other
asset classes at t. Coefficients are standardised to a 1 standard deviation increase in the asset yield. Predictor
(x) variables in rows, specifications in columns. Conditional specification conditions on the own asset yield
at t (e.g. the dividend-price ratio for equity returns). Excess returns are in excess of the government bond
return. Structural breaks demean asset yields (x variables) by both time period and country using the Bai and
Perron (2003) procedure. Breaks, 5-year predicts 5-year ahead returns using predictors adjusted for structural
breaks. OLS regressions with country fixed effects. Standard errors clustered by country-year and adjusted
for autocorrelation in parentheses. *: p < 0.1 **: p < 0.05 ***: p < 0.01.

from year t to year t + h. To give the cross-asset predictability relationships the best chance of

succeeding, I adjust all predictor variables for structural breaks and do not condition on the own

valuation ratio in the cross-asset predictive regression, i.e. the regressions are specified exactly as in

equations (5) and (8). Since all the responses are standardised to a 1 standard deviation increase

in the break-adjusted valuation ratio dp and all regressions are run on a consistent sample, the

magnitudes of the coefficients are comparable across predictors and asset classes.

Figure 4a shows the predictive coefficients on the own valuation ratio. Consistent with evidence

in Section 4, the predictive coefficients are economically large and statistically significant, with a one

standard deviation increase in the own asset yields dp predicting 3–5 ppt higher real returns 1 year

ahead and 4–15 percentage points higher cumulative real returns 5–10 years ahead. The impact is

persistent, with all the coefficients bar that on corporate bonds significant at all horizons at 5% level,

and the corporate bond coefficient significant at 5% level for years 1–7.

Figure 4b shows the predictive power of valuations of other asset classes, for example regressing

equity returns on the rent-price ratio and bond spreads (left-hand panel). Most of the coefficients

are both small and statistically insignificant. The corporate bond spread does not predict any
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Figure 4: Within-and cross-asset predictability at different horizons, adjusting for structural breaks
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(c) Predictive R2:
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Note: Predictable cumulative return change after a one standard deviation increase in the asset yield. Standard
errors clustered by country and year and adjusted for autocorrelation. All predictors are adjusted for
structural breaks. Cumulative return impact estimated using the beta from regressing h-year ahead returns
on either own valuation, or other asset valuations. All regressions are run on a consistent sample across
assets, predictors and horizons. Dashed lines show 95% confidence bands.
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Figure 5: Corporate bond spread growth predictability, adjusting for structural breaks
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Note: Left and middle panel: predictable cumulative change in the spread after a 1 ppt higher bond spread
(left panel), rent-price or dividend-price ratio (middle panel). Dashed lines show 95% confidence bands.
Standard errors are clustered by country and year and adjusted for autocorrelation. All predictors are adjusted
for structural breaks. Cumulative spread growth impact estimated using the beta from regressing h-year
ahead spread growth on today’s asset yields. All regressions are run on a consistent sample across predictors
and horizons.

economically meaningful variation in future returns on housing or equities. The break-adjusted

rent-price ratio does have some short-run predictive power for future stock returns, with a positive

and significant predictive coefficient in the left-hand panel of Figure 4b. But this coefficient actually

turns negative at longer horizons, and insignificant at 5% level from year 5 onwards. High dividend-

price ratios predict high future corporate bond returns (Figure 4b), but the coefficients are not

significant at the 5% level. Figure 4c further compares the R2 of predictive regressions using own

asset valuation to that using valuations of other asset classes. Own valuations have much larger

explanatory power for future returns. Equity and housing do show an R2 similar to the bond spread

at longer horizons, but much of it comes from the rent-price ratio predicting future bond returns

with the wrong sign (Figure 4b right panel).

Because the corporate bond returns for a large part of the sample are approximated from spread

movements, this measurement error biases down the predictive coefficients on corporate bond

returns in Figure 4b. To correct for this, Figure 5 shows the results of forecasting changes in the

bond spread rather than the bond return. The left panel shows the cumulative predictable change in

future spreads following a 1 percentage point higher break-adjusted spread today, the middle panel

shows the predictable change in the spread following 1 percentage point higher dividend-price and

rent-price ratios (without conditioning on the bond spread), and the right-hand panel compares

the R2 of these two predictive regressions. The predictive power of bond spreads is much stronger

when it comes to future spread growth, and much larger than that of the dividend- and rent-price

ratios. Furthermore, a 1 percentage point higher break-adjusted bond spread today is followed by a

roughly 1 percentage point predictable cumulative decline in the bond spread after 5 years. This
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suggests that nearly all the variation in the bond spreads is driven by discount rate news, but that

these discount rate news are highly specific to the corporate bond asset class.

Taken together, cross-asset-class return predictability is limited and much less economically

meaningful than the within-asset-class return predictability. It could, however, be the case that

cross-asset discount rate co-movement is not absent, but is simply not captured by asset-specific

yields dpi. To see if this is the case, I construct a number of alternative proxies for the cross-asset

discount rate, related to direct measures of macro-financial risk, and examine their ability to forecast

returns across all three risky asset classes by running the regressions in (9).

I draw on existing empirical and theoretical literature to determine the list of factors, subject to

data availability for my historical sample. These consist of consumption-related variables which aim

to discern between periods of relatively high and low effective risk aversion through consumption

growth and proxies for habit and the consumption-wealth ratio. Intermediary-based factors aim

to capture the possibility that financial intermediaries are the relevant marginal investor in these

markets and try to proxy for their risk appetite through 3-year growth in bank leverage, real bank

assets and real credit. Other factors include a set of variables which have been shown to predict

stock returns in the US and internationally such as the term spread (Campbell, 1991) and the stock

market capitalization to GDP ratio (Kuvshinov and Zimmermann, 2020). Appendix D.2 provides a

more detailed description of how each factor is constructed.

Table 9 reports the outcomes of forecasting regressions using these factors to predict future

returns on all three asset classes as in in equation (9), again standardising the macro-financial factors

to a one standard deviation increase in order to ease comparability. Because elevated levels of some

factors correspond to high, and others to low values of the discount factor m, the table also includes

the theoretically correct signs of regression coefficients in brackets. The cross-asset predictive power

of macro-financial risk factors is limited. Some factors are important for individual asset classes – for

example, high market capitalization predicts low future equity returns, and high bank asset growth

predicts low future corporate bond returns. But none predict returns on all three asset classes, and

the magnitude of the predictive coefficients is small relative to that of the own asset valuations show

in Table 2.

The consumption-wealth ratio and bank leverage growth do have the right sign on the predictive

relationship for all three asset classes – consistent with the model of Lettau and Ludvigson (2002)

and the empirical findings of Baron and Muir (2018) – although the coefficients are relatively small

and some are insignificant. Appendix Figure A.2 compares the predictive power of these two

variables to own asset valuations at different regression horizons, first predicting future real returns

and then future bond spread growth. Neither of these two factors predict meaningful future return

variation across multiple asset classes. Leverage growth is a good predictor of future corporate bond

returns, outperforming the bond spread for some regression specifications, which suggests that it

is a useful proxy for credit market risk appetite or sentiment (López-Salido et al., 2017; Baron and

Xiong, 2017). But when it comes to predicting a cleaner measure of future mean-reversion in bond

spreads – the future bond spread growth – the bond spread vastly outperforms leverage growth
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Table 9: Cross-asset predictive power of macro-financial risk factors

(1) (2) (3)

Equity rt+1 Housing rt+1 Corporate bond rt+1

Consumption-based factors:
∆3Real Consumptiont(−) -0.025 0.019* -0.012

(0.019) (0.010) (0.014)
Surplus Consumptiont(−) -0.001 -0.006 -0.013

(0.025) (0.009) (0.010)
cayt(+) 0.004 0.006 0.015**

(0.005) (0.004) (0.006)

Financial intermediary factors:
∆3Bank Leveraget(−) -0.008 -0.006* -0.019**

(0.013) (0.003) (0.008)
∆3Real Bank Assetst(−) -0.005 0.003 -0.009

(0.007) (0.006) (0.007)
∆3Real Creditt(−) -0.002 0.009 0.013

(0.016) (0.006) (0.009)

Other factors:
log(MCAPt/GDPt)(−) -0.030** 0.001 0.001

(0.012) (0.004) (0.007)
Term Spreadt(+) 0.003 0.007*** -0.003

(0.008) (0.002) (0.003)
R2

0.030 0.046 0.066

Observations 1475 1391 1266

Note: OLS regressions with country fixed effects. All coefficients are standardised to a 1 standard deviation
increase in the predictor variable. Dependent (y) variable is the log real total return on the specific asset
class, in columns. Predictor (x) variables together with the theoretically correct sign of the regression
coefficient in rows. ∆3Real Consumptiont is the log growth in real consumption per capita from t− 3 to t.
Surplus Consumptiont is the real consumption per capita at t relative to a backward-looking 10-year moving
average trend, from t-10 to t. cayt is a proxy for the consumption-wealth ratio, estimated as the deviations
from the cointegrating relationship between real consumption, a proxy for household wealth (the combined
capitalization of the equity, housing and government bond markets) and real wages. ∆3Bank Leveraget is the
change in the log of bank leverage from t− 3 to t. ∆3Real Bank Assetst is the change in the log of real bank
assets from t− 3 to t. ∆3Real Creditt is the change in the log of real credit to non-financials from t− 3 to t.
log(MCAPt/GDPt) is the log of the market capitalization to GDP ratio. Term Spreadt is the yield differential
between long- and short-term government bonds. Standard errors clustered by country-year and adjusted for
autocorrelation in parentheses. *: p < 0.1 **: p < 0.05 ***: p < 0.01.

as a predictor. Of course, the measures of both these variables in my long-run data are much less

precise than those in Lettau and Ludvigson (2002) and Baron and Muir (2018) – for example, I do

not have a good proxy for human wealth, and my leverage growth measure relates to commercial

banks rather than broker-dealers. This means that the results should be interpreted with caution,

but they do suggest that asset-specific excess volatility remains important even after conditioning on

these cross-asset macro-financial factors.

Taken together, the analysis in this section has shown that asset-specific discount rates do not
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co-move. The correlation of cross-asset-class discount rate news is close to zero, and while returns

within asset class are robustly predictable, there is no meaningful return predictability across asset

classes. Some cross-asset expected return variation is present in the data – for example during

specific time periods such as world wars – but it remains very much the exception rather than the

rule. The vast bulk of excess asset price volatility is asset class specific. The next section explores the

potential underlying drivers of this asset-specific expected return variation.

6. The co-movement puzzle

Expected returns on different risky asset classes vary over time, but they do not co-move. This

suggests that much of the excess volatility in financial markets, and the associated expected return

variation is asset-class-specific. This asset-specific excess volatility represents a new asset pricing

anomaly which cannot be explained by time variation in a common cross-asset discount factor.

This “co-movement puzzle” can be most easily illustrated within the framework of the standard

consumption CAPM but also applies to a broad range other theories in macro-finance, which I

briefly discuss below.

Standard consumption-based theory links the variation in expected returns and asset prices to

the marginal utility of the representative investor. In the simple representative-agent model, the

stochastic discount factor m takes the following form:

mt+1 = u′(ct+1)/u′(ct)

Under this formulation, expected returns on all asset classes are driven by the representative

investor’s marginal utility, and should therefore be strongly positively correlated.3 The simple

consumption-based model is therefore unable to generate the asset-specific discount rate variation

observed in the data. It is also, however, unable to explain a number of other stylised asset pricing

facts pertaining to the high level and volatility of risk premia (Mehra and Prescott, 1985; Cochrane,

2017).

A number of modifications proposed to this model are able to generate high risk premium

levels and volatility, but would still – at least without substantial further modification – be unable to

explain the co-movement puzzle. In what follows, I briefly review the implications for expected

return co-movement arising from the most common modifications of the standard model. I then

consider several alternative mechanisms for generating asset-specific expected return variation and

explaining the co-movement puzzle.

Time-varying risk aversion This set of theories augment the investor’s utility with an additional

parameter referring to the level of past consumption (habit), as in Campbell and Cochrane (1999), or

3In fact, as seen from equation (2), under a constant risk correction σi the correlation between changes in
expected returns should be equal to 1.
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the composition of consumption between different goods, for example housing and non-housing

expenditure in Piazzesi et al. (2007). Because marginal utility now depends on past consumption or

its composition, this additional parameter H also affects the price of risk and expected returns:

E(Ri,t+1) = f (Ht+1/Ht)

This means that effective risk aversion varies over time and asset prices should be low, and expected

returns high, at times of temporarily low consumption (habit) or low consumption share of certain

goods. Movements in H should affect prices of all risky assets and therefore generate co-movement

of expected returns.

Long-run risk models, such as Bansal and Yaron (2004), rely on time variation in consumption

volatility σC to generate movements in the discount factor:

E(Ri,t+1) = f (σC,t)

Again, time-varying consumption risk should affect all categories of risky assets and result in

expected return co-movement.4

Rare disasters Risk of potential large future declines in consumption during disasters can

increase expected returns and risk premia even outside of these disaster periods (Barro, 2006). Time

variation in disaster risk can cause expected returns to vary over time. Gabaix (2012) provides the

following formula for the disaster risk driven expected return:

E(Ri,t+1) = Rsa f e
t + pdis

t Et

[
(B−γ

t+1(1− Rdis
i,t+1)

]
Here, pdis

t is the time-varying disaster probability, γ is risk aversion, Bt+1 captures consumption

losses in a disaster and Rdis
i,t+1 is the disaster-specific asset return. Even though this theory can

generate different levels of risk premia across asset classes based on different values of Rdis
i,t+1, the

time variation in expected returns through pdis
t should be common to all risky assets and induce a

strong co-movement in discount rates of asset classes with positive risk premia. Note also that the

relatively high discount rate co-movement during world wars suggests that disaster risk can drive

cross-asset variation in expected returns, but this influence is largely confined to the periods of the

disasters themselves.

Idiosyncratic risk and preferences Theories in which a representative household prices all

risky assets tend to generate high co-movement in expected returns. This co-movement is, however,

4Because long-run risk reflects movements in long-run consumption which affect current utility through
time non-separability, it should also affect prices of shorter-duration assets such as corporate bonds as well as
longer-dated assets such as housing and equity.

27



typically still present in many theories which allow consumption (Constantinides and Duffie, 1996)

and preferences (Gârleanu and Panageas, 2015) to vary across investors, as long as the actions of

individual investors in different markets are tied together by a no-arbitrage condition akin to that in

equation (2). In this case high cross-sectional dispersion of consumption risk or a high market share

of risk-averse investors would typically increase the price of risk and expected returns along the

lines of the following expression:

E(Ri,t+1) = f (σ(∆c)cross,t, γ̄t),

where σ(∆c)cross,t is the cross-sectional consumption dispersion and γ̄t a weighted average of

individual investor risk aversion. But even in this case, expected returns on all assets should

be high during periods of high idiosyncratic consumption risk and a high market share of risk-

averse investors. Generating asset-specific discount rate movements under such conditions requires

additional frictions, for example in the form of market segmentation.

Intermediary asset pricing Rather than being priced by a representative household, many

assets are priced by financial intermediaries or market makers. In this set of theories, the pricing

kernel m should correspond to financial intermediary risk appetite, usually tied to their balance

sheet characteristics bs such as leverage (He and Krishnamurthy, 2013):

E(Ri,t+1) = f (bst)

Without any other frictions, time-varying intermediary appetite should affect all risky assets and

generate expected return co-movement. However, if assets differ in the extent to which they are

intermediated and cross-market frictions generate some segmentation across markets for different

asset classes, asset-specific expected return variation can arise. For example, in the model of Haddad

and Muir (2021), some asset classes are priced by intermediaries and others by households, resulting

in two different discount factors. Haddad and Muir (2021) provide additional evidence to showing

that expected returns on some asset classes are more responsive to financial intermediary factors

than others. The evidence in Table 9 also suggests that intermediary-based factors can play a role in

generating asset-specific excess volatility, in particular for returns on corporate bonds. My results

also show, however, that even after conditioning on financial intermediary factors, a substantial

amount of asset-specific excess volatility remains.

In light of the difficulties faced by a number of standard theories when it comes to resolving the

puzzle, the rest of this section investigates several alternative mechanisms for generating the type of

asset-specific expected return variation observed in the data.
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Table 10: Correlations between proxies for asset-specific risk

(1) (2) (3) (4) (5) (6)

Consumption beta Return volatility

Equity Housing Bonds
Corporate Equity Housing Bonds

Corporate

Equity 1 1

Housing 0.85 1 0.83 1

Corporate bonds 0.75 0.80 1 0.89 0.86 1

Notes: Pairwise correlations between estimates of asset-specific consumption beta (columns 1–3) and realised
return volatility (columns 4–6). The consumption beta is the covariance between log excess return on the
specific asset class and log real consumption growth. Volatility is the annual standard deviation of log excess
return on the specific asset class. The betas and volatilities are estimated over 25-year rolling windows for the
pooled sample of returns and consumption. All correlations are significant at 1% level.

6.1. Time-varying risk exposures

Expected return on an asset class i is a product of the discount factor m and the risk correction σi

(equation (3)). Put differently, changes in expected returns can correspond not only to variation in

the discount factor m, but also to time-varying asset-class-specific exposures to this factor σi. An

extensive literature following Fama and French (1993) has relied on differences in risk corrections to

explain the differences in levels of expected returns across assets. However, when it comes to time
variation in expected returns, most standard models rely on changes in the discount factor rather

than the exposure to this factor. In some sense this is understandable: time variation in σi requires

that return distributions on whole asset classes vary at high frequency in a predictable manner, so a

constant σi is a natural starting point. But a number of recent papers have used time variation in the

risk correction and macroeconomic risk exposure to explain differences in expected and realised

returns over time.

Lettau, Maggiori, and Weber (2014) augment the standard CAPM with an additional downside-

risk beta, with the risk correction at time t effectively an average of the risk corrections for downside-

risk and exposure to the standard market risk factor. An increase in downside risk increases

the relative riskiness of asset classes which are more exposed to this factor, such as fixed-income

securities, driving up their expected returns relative to those on the other asset classes.

Time-varying risk at the level of whole asset classes is generally difficult to measure in the

data. I construct two proxies for the time-varying asset class beta: the consumption beta of annual

asset returns – the covariance between asset excess return and consumption growth divided by

consumption growth variance – and the unconditional annual excess return volatility, both estimated

using 25-year rolling windows of pooled cross-country data. The estimates of asset-specific risk

do vary over time, but they display strong co-movement across different asset classes. Table 10

columns 1–3 show the pairwise correlations between the consumption betas of different asset classes,

and columns 4–6 show the correlation between asset class level volatilities. All the correlations are
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positive and significant, and most are close to 1. This suggests that on the level of broad classes of

risky assets, time-varying risk exposures may not be the main force generating the asset-specific

time variation in expected returns.

6.2. Capital flows across segmented markets

If there are frictions to moving capital across markets, the discount rate on asset class i, mi, will be

asset-specific:

1 = Et (mi,t+1Ri,t+1) , (11)

But what determines this market-specific mi? One possible explanation is that the discount rate is

still determined as in standard theory – for example through risk aversion or long-run risk – but

these risk factors now correspond to the consumption process of the marginal investor in market i.
For example, Mankiw and Zeldes (1991) show that consumption of households which own equities

is more volatile, helping rationalise the high equity premium. If the consumption risk of investors in

one asset class is uncorrelated with that of investors in other asset classes, and if markets are highly

segmented, this can generate asset-specific movements in discount rates and expected returns.

Appendix Table A.8, however, shows that while consumption growth of different types of

households can be very different on average, the time variation in these growth rates tends to be

highly correlated. Using data from Piketty, Saez, and Zucman (2018), Table A.8 shows that the

consumption rates at the top, middle and bottom of the income distribution – with the top and

middle, correspondingly, thought of as the representative equity and housing investors – is highly

correlated, even though these income groups have experienced widely different average income

growth rates since the 1960s. Furthermore, as shown by recent studies (Martı́nez-Toledano, 2019;

Garbinti, Goupille-Lebret, and Piketty, 2020), most wealthy households own different types of risky

assets – for example, the wealthy own some housing and bonds as well as equity – meaning that their

discount factor variation should affect all asset classes. This makes household-level consumption

volatility a relatively unlikely candidate for explaining the puzzle.

Another potential driver of expected returns in segmented markets is variation in the quantity of

capital supplied or demanded. Greenwood et al. (2018) show that in partially segmented markets,

shocks to the supply of capital can generate asset-specific movements in expected returns which take

some time to dissipate. Gabaix and Koijen (2020), instead, focus on demand. Under their framework,

capital inflows into a specific market put upward pressure on prices, with the price effects being

larger the more inelastic the market supply schedule is. These propositions are difficult to test in

my aggregate data since capital inflows are a combination of both demand and supply, and supply

and demand induced movements carry the opposite predictions for expected returns. Greenwood

et al. (2018) argue that evidence from price impacts of changes in bond supply during quantitative

easing provides support for this channel. Gabaix and Koijen (2020) use a granular instrumental

variable method drawing on portfolio data for individual investors to show that changes in demand
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Table 11: Predictive power of net equity issuance

(1) (2) (3) (4) (5) (6)

Equity Housing Corporate bonds

rt+1 rt+1,t+5 rt+1 rt+1,t+5 rt+1 rt+1,t+5

Net equity issuance / GDP -0.030
∗∗∗ -0.018

∗∗∗
0.005 -0.000 -0.009

∗∗ -0.001

(0.006) (0.004) (0.003) (0.003) (0.004) (0.003)

R2
0.021 0.036 0.002 0.000 0.006 0.000

Observations 1657 1578 1371 1301 1400 1305

Notes: OLS regressions with country fixed effects. All coefficients are standardised to a 1 standard deviation
increase in the log of net equity issuance relative to GDP. Net issuance is gross issues minus redemptions,
from Kuvshinov and Zimmermann (2020). rt+1 is the 1-year ahead real total return, and rt+1,t+5 is the average
5-year ahead log real total return on the specific asset class. Standard errors clustered by country-year and
adjusted for autocorrelation in parentheses. *: p < 0.1 **: p < 0.05 ***: p < 0.01.

for specific assets from certain investor groups have very large price effects, with higher demand

increasing prices and lowering the expected return.

In my aggregate data, I test whether capital flows can explain variation in expected returns by

regressing future returns on all asset classes on net capital inflows into the stock market, measured

as net equity issuance relative to GDP. The net issuance data are from Kuvshinov and Zimmermann

(2020) and capture gross issues minus redemptions at market value, either in actual data or as the

difference between market capitalization growth and capital gains, as in Goyal and Welch (2008).

The resulting movement in expected returns will be positive if issuance is primarily a shock to

supply, negative if it is driven by demand, and zero if equity capital flows do not affect prices, or if

the two effects cancel out. Table 11 reports the coefficients from regressing one- and five- year ahead

returns on the three asset classes on net equity issuance relative to GDP, again standardised to a one

standard deviation increase to ease comparability.

Table 11 shows that high equity issuance predicts low future equity returns, and has very little

predictive power for the other two asset classes (there is some predictive power for corporate bonds

1-year ahead, but the coefficient size and R2 are very small and there is no predictive power for

bonds 5 years ahead). The effects are economically significant: a one standard deviation increase in

issuance predicts 3.1 percentage points lower equity returns 1 year ahead and 9.4 percentage points

lower returns 5 years ahead; and similar in magnitude to those of the dividend-price ratio. This

effect is also something of a lower bound since it mixes up supply and demand factors. Appendix

Table A.9 shows that this predictability is also highly robust, with the predictive power of equity

issuance holding up even when conditioning on structural-break-adjusted own asset valuations.

This suggests that in these macroeconomic data, capital inflows can induce asset-specific movements

in expected returns and that demand effects tend to dominate over supply effects.

The negative issuance predictability, however, also has an alternative interpretation. Baker and

Wurgler (2000) show that a high equity share in new issues predicts low future returns, but argue
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that this is because firms time the market to issue at the peak, and issuance acts as a proxy for

investor sentiment. The negative return predictability in Table 11 could therefore be driven by

asset-specific sentiment as well as the price impact of capital flows. I explore the possibility that

asset-specific return variation is, more generally, driven by volatile investor expectations next.

6.3. Volatile expectations

Excess volatility can arise through variation in expectations that is not linked to future fundamentals.

Behavioural theories and theories allowing for learning permit these expectations to depart from

the full-information rational benchmark such that investors form their forecasts of future cashflows

using an operator E∗ which differs from the full-information rational forecast Erational :

E∗(Ri,t+1) = f ∗(Ii,t) 6= f rational(Ii,t) = Erational(Ri,t+1) (12)

Above, E∗ is the volatile-expectation forecast based on a biased or incomplete information processing

function f ∗, Erational is the rational-expectation forecast based on the information processing function

f rational , and I is the information available when the forecast is made. A volatile expectation forecast

E∗ can generate the excess volatility and return predictability patterns observed in the data. For

example, stock prices may be high – and equity yields dp low – at time t because investors incorrectly

forecast high future dividends based on existing information I. At time t + 1, new information I
arrives and the incorrect forecast is revised, lowering the stock price and resulting in low returns,

potentially generating the type of return predictability observed in the data.

One notable feature of theories involving volatile expectations is that such biases or frictions

apply to asset-specific information Ii, and therefore generate asset-specific variation in expected

returns. For example, investors may be extrapolating past returns for a specific asset class (Barberis,

Greenwood, Jin, and Shleifer, 2015; Barberis and Shleifer, 2003; Adam, Beutel, and Marcet, 2017),

overreacting to asset-specific return surprises (Bordalo, Gennaioli, La Porta, and Shleifer, 2019), or

overweighting the recent history of returns on a specific asset or portfolio (Malmendier and Nagel,

2011; Nagel and Xu, 2019). This asset-specificity is often seen as a shortcoming of these theories

(Cochrane, 2017), but in the case of the co-movement puzzle it actually confers an advantage. Even

though the exact reason for expectation volatility will differ according to the precise model of

expectation formation, the central idea unifying many of these theories is that of extrapolation and

overreaction to – often asset-specific – news.

Existing empirical studies have documented such extrapolation and overreaction patterns within

specific asset classes. In a recent paper, Andonov and Rauh (2020) study the asset-specific return

expectations of public pension funds and show that these display within-asset-class extrapolation:

for example, if the fund had experienced relatively high past stock returns on its portfolio, it also

submits a high expected future equity return on its GASB 67 disclosure. That being said, few papers

have studied whether extrapolation and overreaction for one asset class also “spills over” into
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Table 12: Cross-asset correlations of expected excess returns in the Survey of Professional Forecasters

(1) (2) (3) (4) (5) (6) (7) (8)

Forecasts Forecast errors

Equities Treasuries bonds
AAA

bonds
BAA Equities Treasuries bonds

AAA
bonds
BAA

Equities 1 1

Treasuries -0.29*** 1 0.05 1

AAA bonds 0.09 0.03 1 0.15 0.23** 1

BAA bonds 0.08** -0.10 0.07 1 0.32 0.20** 1

Note: Pairwise correlation coefficients, SPF forecasts and forecast errors. A more positive correlation coefficient
means more correlated expectations across the two asset classes. Signs on all bond yield variabless reversed
to proxy for expected returns. Equity return is in excess of the bill rate, 10 years ahead. Treasury yield is in
excess of the bill rate, 10 years ahead. AAA yield is in excess of treasuries, 5 quarters ahead. BAA yield is in
excess of AAA, 5 quarters ahead. Expectation error is the difference between realised return or yield and
the forecast. Forecasts and errors net out forecaster fixed effects. *: p < 0.1 **: p < 0.05 ***: p < 0.01, using
forecaster-quarter clustered standard errors.

other assets. In what follows, I use data from the Survey of Professional Forecasters (SPF) to compute

correlations between professional forecaster expectations of returns on different asset classes, and

provide evidence for overreaction to asset-specific information akin to f ∗(Ii,t) in equation (12).

The SPF provides quarterly forecasts for a range of real-economy and financial variables, at

the level of individual forecasters. For the purpose of my analysis, I take the forecasts for future

stock returns, as well as yields on government bonds, bills, AAA and BAA rated corporate bonds.

The stock forecasts are only available annually for a long horizon of 10 years, government bond

and bill forecasts are available for both long (10-year) and short (1 quarter to 2 years) horizons,

and corporate bond forecasts are only available for short horizons (1 quarter to 2 years ahead). All

forecasts apart from the BAA bonds are available from 1990, with BAA bonds available from 2010.

To ease comparability, I convert all these forecasts into proxies for excess returns. For equities, I

compute the equity return forecast minus the bill rate forecast; for treasuries, the negative of the

long-term yield forecast minus the bill forecast (since yields vary inversely to bond returns); both at

the 10-year horizon. I also compute shorter-horizon proxies for the excess return on treasuries (a

negative of the treasury minus the bill rate forecast 5 quarters ahead), the excess return of AAA

bonds over treasuries and BAA bonds over AAA bonds. As well as the forecasts themselves, I

calculate the forecast errors by comparing the forecast with the eventual realisation (eg the 10-year

ahead equity return forecast in 2000 to the average return over 2000–2010). Armed with these data, I

study the correlations between forecasts and forecast errors across different assets in Table 12, and

the degree to which these forecasts over- or under-react to forecast revisions in Table 13.

Table 12 reports pairwise correlations between excess return forecasts (columns 1–4) and forecast

errors (columns 5–8) on different assets: equities, long-term treasuries, AAA bonds and BAA bonds.

The equity forecast is always for 10 years ahead (as these are the only equity data available in the
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SPF), the treasury forecast is 10 years ahead when correlated with equities and 5 quarters ahead

when correlated with corporate bonds, and AAA and BAA forecasts are always 5 quarters ahead.5

The forecasts net out forecaster fixed effects to control for systematically pessimistic or optimistic

forecasters, though this has little effect on the correlations. As described above, I invert the yield

forecasts to proxy for bond returns.

If return expectations are correlated across asset classes – for example, if they were driven by a

common cross-asset discount factor – the correlation coefficients in Table 12 should all be high and

positive. This, however, is not the case. The correlations between return expectations in columns 1–4

are close to zero, and the only large correlation is negative rather than positive: when forecasters

expect high excess stock returns, they also expect a high term premium on long-term treasuries,

and hence a low excess treasury return. Correlations are stronger when it comes to forecast errors

in columns 5–8, but still low, around 0.1–0.2 for most asset class pairs. These positive correlations

are, however, driven by realisations and not the forecasts. Put differently, the forecasters appear

to underestimate the degree to which returns and yields on different assets are correlated, and

expectations are less correlated than realised returns – similar to the lower correlation of discount

rate news compared to cashflow news documented in Table 5.

Why are asset-specific return expectations uncorrelated? In what follows, I test for one potential

channel: asset-specific overreaction to new information. For this, I build on the framework of Coibion

and Gorodnichenko (2012) and Bordalo, Gennaioli, Ma, and Shleifer (2020) and test for correlation

between forecast revisions and forecast errors, both within and across asset classes. The general idea

is that if forecasters overreact to news, they may revise their forecast too much, thereby creating a

forecast error in the opposite direction: for example, revise their equity return expectation up to the

extent that it is above the future realised value, and hence the positive forecast revision is followed

by a negative forecast error. To test for this, Bordalo et al. (2020) run the following regression:

xt+h − xn
t+h|t︸ ︷︷ ︸

FEt+h

= βn
0 + βn

1 (xn
t+h|t − xn

t+h|t−1)︸ ︷︷ ︸
FRt+h

+un
t,t+h (13)

Above, x is the variable that is being forecast – e.g. the stock return – FE is the forecast error, FR is

the forecast revision – the difference between the h-ahead forecast made at times t− 1 and t – and

βn
0 are forecaster fixed effects, with the regression being run at the level of individual forecaster n.

A negative βn
1 is evidence that forecasters revise their forecast too much in response to news, i.e.

they overreact. What I do is to in addition test for overreaction to news on other asset classes, by

5Because BAA forecasts are only available from 2010 onwards, I cannot correlate them with equity
expectation errors since computing equity errors requires stock price realisations 10 years ahead, i.e. 2020

onwards for the post-2010 sample.
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Table 13: Asset-specific overreaction in the Survey of Professional Forecasters

(1) (2) (3) (4)

forecast error
Equities

forecast error
Treasuries

forecast error
AAA bonds

forecast error
BAA bonds

Equities forecast revision -0.53
∗∗∗

0.05 -0.00 -0.02

(0.13) (0.04) (0.02) (0.04)

Treasuries forecast revision 0.29
∗∗ -0.31

∗∗∗
0.03 0.00

(0.13) (0.11) (0.08) (0.07)

AAA bond forecast revision 0.19 -0.13 -0.39
∗∗∗ -0.35

∗

(0.56) (0.29) (0.10) (0.19)

BAA bond forecast revision -0.98
∗∗∗

(0.17)

R2
0.07 0.07 0.08 0.45

Observations 164 113 263 68

Notes: Forecast revision is the change in the forecast for quarter t + h between quarter t and t− 1 for bonds
and year t and t− 1 for equities. Forecast error is the realised value at t + h minus the forecast made at t.
Forecast horizons are 10 years for equities and 5 quarters for bonds. Regressions with individual forecaster
fixed effects, standard errors clustered by forecaster and quarter. Since BAA spread forecast data start in
2010, I do not include them in regressions 1–3 in order to maintain a large enough sample size. *: p < 0.1 **:
p < 0.05 ***: p < 0.01.

regressing an asset-specific forecast error on other assets’ forecast revisions as follows:

xi
t+h − xi,n

t+h|t︸ ︷︷ ︸
FEi

t+h

= βn
0 + βn

own (xi,n
t+h|t − xi,n

t+h|t−1)︸ ︷︷ ︸
FRown

t+h

+βn
cross (xj,n

t+h|t − xj,n
t+h|t−1)︸ ︷︷ ︸

FRcross
t+h

+un
t,t+h (14)

Above, FEi is the forecast error on asset i – e.g. equities – FRown is the within-asset-class (e.g.

equity forecast) revision, and FRcross are forecast revisions for other asset classes. If overreaction

to news is asset-specific, we should see βn
own < 0 and βn

own ≥ 0. I run these regressions for each

asset class i, using horizons of 10 years for equities and treasuries, and horizons of 5 quarters for

corporate bonds.6 Because the forecasts are uncorrelated, running the within and cross-asset-class

specifications together, as in Table 13, shows similar results to running them separately.

Table 13 shows the results of regressing the forecast error on within-asset-class and cross-asset-

class forecast revisions.7 Within asset classes, there is consistent evidence of overreaction: the

estimates of βn
own on the diagonal are all negative and significant, with magnitudes similar to those

documented by Bordalo et al. (2020). This confirms the evidence in Bordalo et al. (2020) that while

6
5 quarters is the longest horizon for which I can calculate the revision term FR from consecutive 5- and

6-quarter ahead forecasts. For 10-year ahead forecasts, I simply take the difference between 10-year ahead
forecasts in year t and t− 1 (since stock market forecasts are only available for the 10-year horizon).

7As before, because the BAA yield forecast data only start in 2010, I do not include it in the regressions in
Table 13 columns 1–3 to keep a large enough sample for those estimates.
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aggregate forecasts studied by, among others, Coibion and Gorodnichenko (2012) may display

underreaction (βn
own > 0), forecaster-level forecasts – especially those for financial variables – often

display overreaction. But my findings also show that this overreaction is asset-class-specific. The

off-diagonal βn
cross estimates are mostly insignificant, small in magnitude, and often positive rather

than negative (e.g. equity forecasts underreact to treasury forecast revisions).

The only negative and significant estimate is for the BAA-AAA spread reaction to the AAA-

treasury spread forecast revisions in column 4 (coefficient of -0.35), suggesting that BAA bond yields

overreact to news related to AAA bonds. This evidence is consistent with forecaster overreaction

within asset class (since AAA and BAA are both corporate bonds), but not across asset classes.

Interestingly, the BAA bond spread regression also displays the highest overreaction R2, similar to

the high discount rate news share and mean-reversion coefficient for the within-asset-class corporate

bond spread predictability regressions in Table 3 and Figure 5.

If expectation formation is volatile because of learning or biases and information is asset-specific,

these volatile expectations can generate asset-specific volatility in expected returns. The evidence

presented above suggests that one mechanism behind such sentiment variation – overreaction to

asset-specific news – is present in the SPF survey data, and generates expected return variation that

is specific to a particular asset class.

6.4. Other asset-specific factors

In what follows, I briefly discuss two other factors – non-monetary payoffs and credit constraints –

which can generate asset-specific variation in expected returns.

Liquidity, convenience and housing utility Asset valuations depend not only on monetary

cashflows, but also on any additional non-monetary payoffs provided by the asset. These include

liquidity and the utility flow of services for housing. Time-varying liquidity premia should affect

the price differential of liquid vs illiquid assets, generating a wedge in expected returns between

these two asset categories. Bao, Pan, and Wang (2011) show that liquidity premia form an important

component of the corporate bond spread, and Piazzesi and Schneider (2016) show that housing

assets are illiquid with housing turnover generally around a tenth of that in the stock market. In

addition to liquidity and convenience premia, housing may generate additional utility services – for

homeowners – which are not well measured by monetary rents.

Credit constraints Whereas equity and bond purchases are often financed by cash, house

purchase is typically financed by credit, with the importance of mortgage finance rising substantially

over recent decades (Jordà, Schularick, and Taylor, 2016a). Variation in credit conditions can

therefore explain some of the variation in demand for housing assets, and with it the time variation

in housing-specific expected returns (Favilukis, Ludvigson, and Van Nieuwerburgh, 2017).
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Table 14: Predictability using proxies for housing utility, credit conditions and liquid asset supply

(1) (2) (3) (4) (5) (6)

Equity Housing Corporate bonds

rt+1 rt+1,t+5 rt+1 rt+1,t+5 rt+1 rt+1,t+5

Rent expenditure/GDP 0.004 -0.005 0.003 0.001 0.010
∗∗∗

0.005

(0.01) (0.00) (0.00) (0.00) (0.00) (0.00)

Mortgage loan growth 0.008 0.003 0.011
∗∗∗

0.001 0.008 0.006

(0.01) (0.01) (0.00) (0.00) (0.01) (0.01)

Public debt/GDP 0.023
∗∗∗

0.016
∗∗ -0.002 0.000 0.014

∗∗
0.010

∗∗

(0.01) (0.01) (0.00) (0.00) (0.01) (0.00)

R2
0.013 0.032 0.018 0.001 0.035 0.041

Observations 1651 1578 1633 1544 1408 1313

Notes: OLS regressions with country fixed effects. All coefficients are standardised to a 1 standard deviation
increase in the predictor variable. Predictor (x) variables in rows. Rent-GDP and public debt-GDP ratios
are in logs. Mortgage loan growth is the log cumulative 3-year growth in mortgage credit net of inflation.
Dependent (y) variables in columns. rt+1 is the 1-year ahead log real total return, and rt+1,t+5 is the average
5-year ahead log real total return on the specific asset class. Standard errors clustered by country-year and
adjusted for autocorrelation in parentheses. *: p < 0.1 **: p < 0.05 ***: p < 0.01.

Table 14 tests the importance of these asset-specific factors by using proxies for housing utility,

housing credit conditions, and liquid asset supply to predict future returns across the three asset

classes. Following Piazzesi et al. (2007), the value of housing utility is proxied by the share of

rental expenditure in GDP, with rents being a proxy for total housing-related expenses. Housing

credit conditions are proxied as the 3-year cumulative growth in real mortgage credit. Following

Krishnamurthy and Vissing-Jorgensen (2012), I use the public debt to GDP ratio as a rough proxy

for the supply of liquid assets, with the idea being that if public liquid assets are plentiful, demand

for liquidity is easy to satisfy and liquidity premia – and hence the expected returns on illiquid

assets – ought to be low.

Table 14 shows that these factors have some influence on asset-specific expected returns, but

this influence is limited. A high rental expenditure share forecasts high year-ahead corporate bond

returns (column 5) but not those at other horizons or asset classes. Mortgage loan growth does

forecast higher housing returns in the short run – in line with higher demand for housing driven

by this higher credit availability – but not in the long run. High public debt forecasts high rather

than low returns on equities and corporate bonds, suggesting that these assets may be pricing a

high macroeconomic risk exposure rather than a low liquidity premium. The R2 statistics of the

predictive regressions are low – though of course, more precise proxies of these different factors

may do a better job of forecasting returns.

Taken together, this section has shown that the co-movement puzzle is difficult to reconcile with

the most prominent asset pricing theories, since they tend to rely on a single risk factor, generally

relating to macro-financial risk, to generate expected return variation across all asset classes. Simple

37



modifications of these theories introducing additional frictions, time-varying risk exposures and

investor heterogeneity also appear to fall somewhat short of generating the type of asset-specific

expected return variation observed in the data. Instead, looking at conceptually different types of

drivers of excess volatility – namely, capital flows and volatile expectations – offers a promising way

of resolving the puzzle.

7. Conclusion

This paper has used long-run data spanning 17 countries, 146 years and 3 major risky asset classes

to assess the underlying drivers of asset price volatility. This analysis has confirmed the ubiquity of

Shiller (1981)’s volatility puzzle: prices of all major risky asset classes vary more than fundamentals

in a highly predictable manner. For equities, the volatility puzzle is not quite as pervasive as

previously thought, with time-varying dividend growth accounting for around half of the variation

in dividend-price ratios. For housing and corporate bonds however, non-fundamental variation is

by far the dominant force behind observed asset price movements.

The main contribution of this paper is to document a new asset pricing anomaly which should

ultimately help pin down the underlying source of this excess volatility. I find that the discount rates

– or expected returns – on different asset classes do not co-move. The low degree of co-movement is

highly pervasive, stretching across different time periods, countries and holding up under a variety

of alternative testing methods. It is difficult to reconcile with many of the established asset pricing

theories which attribute excess volatility to a variation in a common cross-asset discount factor. I

show that most observed excess volatility is, in fact, asset-specific and therefore not attributable to

common macroeconomic forces such as disasters and risk aversion. Instead, my findings point to

the importance of conceptually different sources of asset price variation in the form of time varying

capital flows and volatility in the expectation formation process itself.
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Appendix

A. Data coverage

Table A.1: Data coverage

Country Equity Housing Corporate Bonds
Australia 1870–2016 1901–2015 1915–2016

Belgium 1870–2016 1890–2015 1870–2016

Canada 1870–2016 1905–2016

Denmark 1872–2016 1875–2015 1991–2016

Finland 1912–2016 1920–2015 1922–2015

France 1870–2016 1870–2015 1870–2016

Germany 1870–2016 1870–2015 1870–2016

Italy 1870–2016 1927–2015 1873–2016

Japan 1886–2016 1931–2015 1900–2016

Netherlands 1900–2016 1870–2015 1870–2016

Norway 1880–2016 1871–2015 1903–2016

Portugal 1870–2016 1948–2015 1905–2016

Spain 1899–2016 1900–2015 1884–2016

Sweden 1871–2016 1883–2015 1871–2016

Switzerland 1875–2016 1901–2015 1925–2016

UK 1870–2016 1895–2015 1870–2016

USA 1871–2016 1890–2015 1870–2016

B. Corporate bond data description
Corporate bond data include yields, spreads and holding period returns on bonds issued by private
sector creditors, targeting 10-year maturity. The corporate bond discount rate proxy is the spread,
equal to the yield to maturity differential between corporate and government bonds:

spreadt = YTMcorporate,t −YTMgovernment,t (A.1)

The yield to maturity measures the implicit discount rate which would make the present value
of future coupon payments equal the observed bond price, and the spread, therefore, measures
the forward-looking risk premium embedded in the prices of corporate and government issued
securities.

I construct two measures of the corporate bond return r. The first measure is the holding period
return, which is the sum of capital appreciation ∆P and coupon payments C received during year t,
in proportion to the previous year’s bond price:

rholding
bond,t+1 = Cbond,t+1/Pbond,t + (Pbond,t+1 − Pbond,t)/Pbond,t (A.2)

Because of a lack of secondary sources for corporate bond return data, I sometimes estimate the
price change from the change in yields using duration approximation. Results are, however, robust
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to only using non-approximated bond returns. The second bond return measure does not rely on
such approximation, and simply uses the change in spreads as a proxy for returns:

rimplied
bond,t+1 = −(spreadt+1 − spreadt) (A.3)

The rimplied
bond,t+1 proxies both the direction and magnitude of the bond price change, and is commonly

used in the literature (López-Salido et al., 2017). Comparing the current spread to future spread
growth also allows to directly estimate the degree of predictable mean reversion in bond prices.

Most of the corporate bond data were constructed from primary sources, by aggregating yields
and returns on individual bonds listed on the domestic stock exchange. The bulk of the data
comes from domestic stock exchange listings, complemented with bonds listed on major foreign
exchanges (e.g. London and New York) and over the counter transactions. I weight the average
by the market capitalization of individual bonds – unless these data are missing or the sample
size is small, in which case I use equal-weighted averages to avoid biasing the series towards any
individual bond. The individual listings data are complemented by a rich selection of secondary
sources from publications of statistical agencies, international organisations and central banks, as
well as financial history books and research articles.

The corporate bond sample covers all private sector fixed-rate bonds traded on the secondary
market of the respective country with a maturity close to 10 years. I exclude foreign company
bonds, foreign currency bonds of domestic companies, bonds with explicit government guarantees,
and mortgage bonds issued by credit institutions or special purpose vehicles.8 For some historical
periods, most listed bonds had very long maturities, or there were relatively few bonds listed and
traded. In these cases I extend the maturity window, sometimes including all private sector listed
bonds, in order to obtain a comprehensive sample coverage. For periods where secondary markets
were thin but primary markets were active, I rely on issue yields instead of secondary market yields.
Where maturity data are missing, I use current yields – the ratio of coupon to bond price – instead
of yields to maturity. The government bond yield data are an extended and updated version of
those in Jordà et al. (2019a). The government bond dataset also excludes foreign currency bonds
and targets a maturity of 10 years.

The extensive use of these new and previously uncovered data sources allows me to guard
against a number of biases in estimating a consistent corporate bond yield series, described in the
next section. The most pressing bias refers to the time variation in selection and credit quality of the
corporate bond index, and is largely dealt with by using a large sample of bonds, comparing the
bond yields on different bonds within the microdata, and tests for subperiod stability and robustness
of results.

Accuracy of corporate bond data Constructing a data series that captures the evolution of
corporate bond credit risk premiums over time and across countries faces three main challenges.
First, corporate bond data are subject to sample selection issues. Not all companies have access to
the corporate bond market, and the type of company that has access may vary over time. Much
of the early corporate bond market was dominated by railway companies. Later, railway bonds
became less and bank bonds – more important. A second, related, bias is that outside of the US and
the recent sample period, I do not have data on bond credit ratings. Therefore, the credit quality of
the representative bond in the sample may change over time and across countries.

8For most of my sample, mortgage bonds were government guaranteed or strictly regulated, and generally
considered safe assets on par with government debt. I do, however, include private non-financial company
bonds backed by mortgages or property, which were generally not government-guaranteed, not strictly
regulated, and considered risky.
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I guard against these biases in several ways. First, I utilise a wide array of new and previously
unused sources that document bond prices and yields on domestic stock exchanges, in over the
counter transactions, and for primary market issuance, complemented by data from international or
foreign exchange listings. This gives me a comprehensively broad coverage of historical corporate
bond transactions. Within this broad coverage, the scope for selection bias is less apparent. For
example, the series that were constructed from microdata include non-financial non-railway bonds
for every country and data period, and in general, the trends in the yields of non-railway bonds
are very similar to the overall index. By excluding mortgage bonds and government-guaranteed
bonds, I ensure that my sample always measures the credit risk faced by private sector bond issuers,
regardless of selection.

To the extent that selection biases do exist, they seem to mainly affect cross-country rather
than cross-time differences. Some countries, such as UK, US and Germany, have had active and
diverse corporate bond markets throughout most of the sample. In other countries, such as Sweden
and Australia, market participation was generally tilted towards larger, safer companies. Several
countries, such as Portugal and Spain, had comparatively small but diverse corporate bond markets,
which included a wide variety of credit risks. To guard against remaining selection biases, I
always demean the series within country, and as a robustness check, also across country-specific
time periods, using the algorithm of Bai and Perron (2003) to detect structural breaks. I also test
the validity of my results across a variety of subsamples and historical time periods. The focus
throughout the paper is on variation across time rather than across countries: most statistics shown
are cross-country averages, and regressions include country fixed effects, with various robustness
checks for stability across time periods. Even though it is not possible to eliminate selection bias
completely, the impact of this bias on my findings is likely to be small.

A third potential difficulty relates to calculating yields to maturity. Accurate maturity data are
difficult to come by for some historical sources, and often do not account for embedded options
and bond conversions. In one sense, the long time dimension of my data helps guard against such
biases. For countries where I have the microdata, I can observe the first and last trade for each
bond, and hence when the bonds were effectively matured or a redemption option exercised. These
allow me to obtain additional, and improve existing bond maturity proxies. Some data series also
contain information on options, in which case I follow the usual practice of taking the option date
as the maturity date if the bond is trading above par (as in, for example, Klovland, 2004). A number
of publications also include option-adjusted effective yield estimates, even for historical data, and
even for individual bonds (see, for example Mediobanca, Various years). For the early historical
period, relatively few bonds had embedded conversion options. That being said, I do sometimes
have to rely on current yields, and some of the secondary sources do not specify whether the yield
is calculated as a yield to maturity, or a simple current yield. Over the whole sample, the biases
arising from uncertainty around maturity dates are likely to be small.

Comparison to existing datasets These new data mark a significant step forward in docu-
menting the returns and riskiness of different classes of risky wealth. Going beyond US equities
market reduces the selection bias of this relatively successful asset market. Adding housing and
corporate bonds documents the returns and risks on the largest component of household wealth
(residential real estate), and the most macro-informative asset (corporate bonds). The presence
of both housing and corporate bond data also allows me to narrow down the range of potential
explanations behind the low co-movement. The risky asset classes which are not included the
analysis consist of commercial property, agricultural land, unlisted equity and business capital.
Housing and equity return data provide rough proxies for these missing asset classes, but the more
detailed analysis is left to future research.
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C. Return predictability within asset classes: additional results

C.1 Additional predictive regressions

Table A.2: Predicting corporate default rates with yield spreads, US data

(1) (2)

Default rate, t+1 ∆ Default rate, t+1

spreadt 1.485***
(0.274)

∆ spreadt 0.195

(0.331)
R2

0.430 0.002

Observations 142 141

Note: Dependent (y) variables are the one-year ahead level and absolute change
in the corporate bond default rate. The default rate is calculate as the par value
of bonds in default relative to total outstanding. Data are for US only. Predictor
(x) variables are the level and the change in the corporate bond spread. OLS
regressions with heteroskedasticity-robust standard errors in parentheses. *:
p < 0.1 **: p < 0.05 ***: p < 0.01.

Table A.2 shows that high spreads are positively correlated with future corporate bond defaults
in the US, though this relationship is only significant in levels and not in changes. Table A.3 tests
the predictability of returns on each asset class within individual countries. The coefficients on all
return, dividend growth and spread growth variables in columns 1–6 are of similar magnitude to
the baseline panel regression in Table 2. Because of the annual data frequency and the lower number
of observations, the statistical power of the estimates is somewhat smaller than that in the panel
regression. But if we adjust the data for structural breaks as in table A.4, returns are predictable
for almost every country and asset class. In the break-adjusted regression, dividends are strongly
predictable whereas evidence for rent growth predictability is rather weak. Note also that the non
break adjusted US equity return coefficient in Table A.3 is insignificant contrary to the findings
of Cochrane (2008). This is largely explained by the different sample used in this paper – rather
than using the CRSP data which go back to 1926, I use the Shiller (2000) S and P 500 data going
back to 1870. As also shown by Chen (2009) and Golez and Koudijs (2018), in this sample dividend
predictability becomes stronger and return predictability – weaker. In any case, consistent with
Lettau and Van Nieuwerburgh (2008), both returns and dividends become predictable once we
adjust the US data for structural breaks.
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Table A.3: Return and cashflow predictability in individual countries

(1) (2) (3) (4) (5) (6)

Equity Housing Corporate bonds

rt+1 dgt+1 rt+1 dgt+1 rt+1 ∆spreadt+1

Australia 0.032** -0.020* 0.009 -0.008 0.025** -0.385***
(0.013) (0.011) (0.007) (0.006) (0.010) (0.081)

Belgium 0.033 -0.027 -0.024* -0.043*** 0.018** -0.589***
(0.025) (0.043) (0.014) (0.012) (0.009) (0.113)

Canada 0.024* -0.059*** 0.027*** -0.211*
(0.014) (0.018) (0.008) (0.125)

Denmark -0.003 -0.051** 0.025*** -0.001

(0.018) (0.024) (0.006) (0.003)
Finland 0.036 -0.069* 0.047*** -0.016 0.020* -0.385**

(0.033) (0.041) (0.013) (0.013) (0.012) (0.165)
France 0.093*** 0.028 0.034*** 0.018*** 0.036*** -0.184

(0.019) (0.029) (0.008) (0.006) (0.008) (0.117)
Germany -0.022 -0.157*** 0.038*** 0.003 0.049*** -0.217***

(0.024) (0.027) (0.009) (0.004) (0.017) (0.073)
Italy 0.029 -0.062 0.030*** -0.020 0.034** -0.559***

(0.035) (0.038) (0.008) (0.016) (0.014) (0.126)
Japan 0.030 -0.052** 0.019*** -0.007 0.014 -0.462***

(0.023) (0.021) (0.007) (0.004) (0.013) (0.174)
Netherlands 0.016 -0.063*** 0.023*** -0.008 0.024*** -0.266***

(0.021) (0.024) (0.007) (0.005) (0.006) (0.066)
Norway 0.005 -0.057** 0.024*** 0.004 0.042*** -0.418***

(0.020) (0.024) (0.008) (0.005) (0.008) (0.103)
Portugal 0.028 -0.012 0.003 -0.025** 0.032* -0.340***

(0.035) (0.069) (0.012) (0.010) (0.018) (0.099)
Spain 0.053*** -0.057** 0.026** -0.006 -0.032*** -0.144*

(0.021) (0.026) (0.011) (0.006) (0.008) (0.080)
Sweden 0.001 -0.091*** 0.014** -0.004 0.034*** -0.254***

(0.018) (0.016) (0.007) (0.004) (0.007) (0.058)
Switzerland 0.007 -0.060*** 0.008 -0.008* 0.021** -0.256**

(0.019) (0.020) (0.005) (0.004) (0.009) (0.106)
UK 0.046** -0.021*** 0.022*** -0.000 0.009 -0.390***

(0.019) (0.006) (0.006) (0.005) (0.008) (0.112)
USA 0.021 -0.039*** 0.024*** -0.007 0.034*** -0.156***

(0.015) (0.012) (0.009) (0.005) (0.006) (0.057)

Significant/Total 5/17 13/17 13/16 4/16 14/16 15/16

Note: OLS regressions at country level. Predictor (x) variables are the log dividend-price ratio, log rent-price
ratio and the percentage point corporate bond spread, all standardised to a 1 standard deviation increase.
Dependent (y) variables in columns. r is the log real total return, dg is log real dividend or rental growth. ∆
spread is the percentage point change in the bond spread. Danish corporate bond regression omitted as the
bond series start in 1990. Heteroskedasticity-robust standard errors in parentheses. *: p < 0.1 **: p < 0.05 ***:
p < 0.01.
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Table A.4: Return and cashflow predictability in individual countries, adjusted for structural breaks

(1) (2) (3) (4) (5) (6)

Equity Housing Corporate bonds

rt+1 dgt+1 rt+1 dgt+1 rt+1 ∆spreadt+1

Australia 0.028** -0.038*** 0.017*** -0.020** 0.032*** -0.617***
(0.014) (0.012) (0.007) (0.009) (0.008) (0.092)

Belgium 0.030 -0.037 -0.040** -0.057*** 0.015* -0.652***
(0.024) (0.041) (0.017) (0.012) (0.009) (0.105)

Canada 0.039*** -0.075*** 0.026*** -0.318**
(0.011) (0.017) (0.008) (0.155)

Denmark 0.030* -0.038 0.021*** -0.004

(0.016) (0.026) (0.006) (0.006)
Finland 0.064** -0.116*** 0.052*** 0.002 0.007 -0.833***

(0.032) (0.037) (0.016) (0.014) (0.011) (0.189)
France 0.103*** 0.019 0.024*** 0.002 0.038*** -0.523***

(0.020) (0.024) (0.008) (0.007) (0.008) (0.174)
Germany -0.026 -0.186*** 0.027* -0.005 0.058*** -0.334***

(0.025) (0.022) (0.014) (0.004) (0.019) (0.079)
Italy 0.035 -0.066 0.009 -0.021 0.018 -0.821***

(0.036) (0.042) (0.006) (0.015) (0.012) (0.151)
Japan 0.033 -0.081** 0.020** 0.003 0.024*** -0.617***

(0.030) (0.032) (0.010) (0.008) (0.009) (0.164)
Netherlands 0.043** -0.085*** 0.024*** -0.009 0.029*** -0.382***

(0.021) (0.023) (0.006) (0.006) (0.007) (0.101)
Norway 0.023 -0.047** 0.036*** 0.008* 0.029*** -0.572***

(0.020) (0.023) (0.007) (0.005) (0.009) (0.104)
Portugal 0.079*** -0.011 0.003 -0.020* 0.032 -0.554***

(0.030) (0.071) (0.007) (0.011) (0.021) (0.091)
Spain 0.056*** -0.071*** 0.031*** -0.011 -0.010 -0.458***

(0.018) (0.024) (0.011) (0.007) (0.009) (0.151)
Sweden 0.027 -0.091*** 0.029*** -0.001 0.023*** -0.432***

(0.020) (0.016) (0.006) (0.004) (0.008) (0.082)
Switzerland 0.018 -0.067*** 0.012** -0.002 0.018** -0.438***

(0.018) (0.019) (0.005) (0.003) (0.009) (0.130)
UK 0.067*** -0.018*** 0.031*** -0.001 0.013 -0.594***

(0.016) (0.005) (0.007) (0.005) (0.008) (0.121)
USA 0.034** -0.062*** 0.030*** -0.007* 0.018*** -0.405***

(0.013) (0.012) (0.009) (0.004) (0.007) (0.107)

Significant/Total 10/17 12/17 14/16 5/16 11/16 16/16

Note: OLS regressions at country level. Predictor (x) variables are the log dividend-price ratio, log rent-price
ratio and the percentage point corporate bond spread, all adjusted for structural breaks and standardised
to a 1 standard deviation increase. Dependent (y) variables in columns. r is the log real total return, dg is
log real dividend or rental growth. ∆ spread is the percentage point change in the bond spread. Danish
corporate bond regression omitted as the bond series start in 1990. Heteroskedasticity-robust standard errors
in parentheses. *: p < 0.1 **: p < 0.05 ***: p < 0.01.
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C.2 Discount rate and cashflow news, VAR estimation

Equation (4) decomposes risky asset valuation into a discount rate and cashflow component.
Similarly, the variance in valuation ratios dp can be attributed to discount rate and cashflow news,
as shown below:

Var(dpi,t) = Var(E
∞

∑
s=0

ρs
i ri,t+1+s)︸ ︷︷ ︸

DR news

+Var(E
∞

∑
s=0

ρs
i dgi,t+1+s)︸ ︷︷ ︸

CF news

−2Cov(E
∞

∑
s=0

ρs
i ri,t+1+s, E

∞

∑
j=0

ρs
i dgi,t+1+s)

(A.4)
To estimate the discount rate and cashflow news components of equity and housing valuations, I
follow Golez and Koudijs (2018) and estimate a VAR in three variables [ri,t, dgi,t, dpi,t] ≡ zi,t:

zi,t = Azi,t−1 + ui,t (A.5)
zi,t = [ri,t, dgi,t, dpi,t]

′ (A.6)
E(zz′) = Γ; E(uu′) = Σ; I = (e1, e2, e3) (A.7)

The VAR is estimated using GMM, with the following 9 moment conditions:

E[(zi,t+1 − zi,t)⊗ zi,t] = 0 (A.8)

The present value relation in (4) imposes three additional moment restrictions:

(e1′ − e2′ + ρe3′)A = e3′ (A.9)

I estimate the VAR using 6-equation GMM subject to the constraints in (A.9), and accounting for
time and cross-sectional dependence in standard errors. The resulting estimates allow me to do
two things. First, I can estimate the relative contribution of discount rate and cashflow news to the
variance of the dividend or rent to price ratios in (A.4):

Var(dpi,t) = e3Γe3 = e1′A(I − ρA)−1Γe3︸ ︷︷ ︸
DR news

− e2′A(I − ρA)−1Γe3︸ ︷︷ ︸
CF news

(A.10)

Here, A is the VAR coefficient matrix, and Γ is the covariance matrix of the regressors in (A.7).
Second, following Campbell (1991), I can derive a “clean” series of the time-varying risk premium

and fundamental component of returns on each asset – more precisely, the discount rate and cashflow
news in the unexpected asset returns ri,t+1 −Eri,t+1:

ri,t+1 −Eri,t+1 = −e1′ρi A(I − ρi A)−1ui,t+1︸ ︷︷ ︸
DR news

+ (e1 + e1′ρi A(I − ρi A)−1)ui,t+1︸ ︷︷ ︸
CF news

(A.11)

For corporate bonds, Nozawa (2017) shows that the credit spread can be expressed as a sum
of expected returns, and expected default risk over the remaining maturity of the bond – taken to
be 10 years, the maturity I target in the data. Since I do not observe default risk, I simply compare
the variance of the corporate bond spread with the variance of future spread growth, discounted at
factor ρ, and take the residual to be attributable to cashflow news:

Var(spreadt) = Var(
s=9

∑
s=1

ρs
bond∆spreadt+s) + Cashflow news (A.12)
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Table A.5: Return predictability in a VAR

(1) (2) (3) (4) (5) (6)

Equity Housing

rt+1 dgt+1 dpt+1 rt+1 dgt+1 dpt+1

Estimated coefficients:

rt 0.101*** 0.018 -0.086** 0.207*** -0.012 -0.230***
(0.032) (0.043) (0.038) (0.047) (0.029) (0.045)

dgt -0.004 -0.044 -0.042 0.156*** 0.445*** 0.304***
(0.027) (0.051) (0.045) (0.044) (0.044) (0.046)

dpt 0.061*** -0.085*** 0.887*** 0.066*** -0.022*** 0.957***
(0.012) (0.018) (0.017) (0.007) (0.007) (0.008)

Variance decomposition of dpt:

DR share 45 65

CF share 55 35

Observations 2266 1793

Note: VAR subject to present value moment constraints. Estimated using GMM, accounting for cross-sectional
and time dependence in standard errors. Variables are log real total return r, log real dividend or rent growth
dg, and log of dividend-price or rent-price ratio dp. DR share is the proportion of variation in dpt that is
due to discount rate news. CF share is the proportion of variation in dpt that is due to expected cashflow
movements. *: p < 0.1 **: p < 0.05 ***: p < 0.01.

An alternative way of assessing the importance of expected returns is simply to regress the ten-
year ahead credit spread growth on the current credit spread – an exercise that, similarly to the
long-horizon regressions in Table 4, show that almost all of the variation in credit spreads can be
accounted for by expected returns over the lifetime of the bond. Due to the lack of corporate default
data outside of the US, and the fact that most spread variation reflects future expected returns, I
simply use the change in the bond spread as a proxy for the discount rate news on this asset class.

Table A.5 shows the estimated VAR for housing and equity, using GMM specified in equations
(A.8) and (A.9), and the corresponding variance decomposition ratios in equation (A.10). Dependent
variables zi,t+1 are in columns, and predictor variables zi,t are in rows. As in Table 2, the first
two columns present the predictive coefficients on next period’s real equity returns ri,t+1 and real
dividend growth dgi,t+1 – but unlike in Table 2, the coefficients are not standardised. The bottom
row uses the dividend-to-price ratio dpi,t as a predictor, so the estimates in the first two columns
row 3 are the non-standardised versions of the OLS estimates in the first two columns row 1 in
Table 2. Compared to OLS, the VAR estimates a richer dynamic structure, but the magnitudes of the
coefficients of interest are very similar across the two specifications (Table 4).
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D. Discount rate co-movement: additional results

D.1 Discount rate correlations

Figure A.1: Co-movement of asset-specific discount rate proxies, first differences
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Note: Pairwise correlation coefficients between changes in the dividend-price ratio, rent-price ratio and
corporate bond spread over rolling decadal windows (e.g. the value for 1875 if the correlation over the
window 1870–1880). Shaded areas are 95% confidence intervals, using country-clustered standard errors.

Table A.6: Discount rate and cashflow news correlations within each country

Discount rate news Cashflow news

Equity and housing Equity and
corporate bonds

Housing and
corporate bonds

Equity and housing

Australia 0.01 0.05 0.16 0.15

Belgium 0.47*** 0.12** 0.24*** 0.54***
Canada 0.22***
Denmark −0.03 −0.04 0.16 0.06

Finland 0.14* −0.40** −0.07 0.20**
France 0.15** 0.09 −0.06 0.33***
Germany 0.10 0.03 −0.12* 0.06

Italy 0.18 0.25** 0.10 0.29

Japan 0.08 −0.02 −0.30* 0.19

Netherlands −0.14 0.06 0.05 0.02

Norway −0.07 0.08 −0.06 0.15

Portugal −0.12 0.02 0.08 0.29

Spain −0.27** −0.23 0.14 0.02

Sweden 0.11 0.18 0.06 0.10

Switzerland −0.12 0.00 0.11 0.13

UK −0.13** 0.29* 0.04 0.24**
USA 0.11 0.36*** 0.02 0.33***
Sig. > 0 / Total 3/16 5/17 1/16 5/16

Sig. < 0 / Total 2/16 1/17 2/16 0/16

Not sig. / Total 11/16 11/17 13/16 11/16

Note: Pairwise correlation coefficients. Discount rate and cashflow news for equities and housing are estimated
as the innovations to present value of future returns and cashflows, respectively, for each asset, using a VAR
in returns, cashflow growth and valuations, and present value moment constraints. Discount rate news for
bonds is the change in the spread. *: p < 0.1 **: p < 0.05 ***: p < 0.01
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Table A.7: Discount rate and cashflow news correlations within each country, after 1950

Discount rate news Cashflow news

Equity and housing Equity and
corporate bonds

Housing and
corporate bonds

Equity and housing

Australia −0.01 0.08 0.17 0.10

Belgium 0.14 −0.10 0.04 0.22*
Canada 0.29***
Denmark 0.10 −0.04 0.16 0.24**
Finland 0.07 −0.39* −0.04 0.07

France 0.11 0.08 −0.20* 0.05

Germany −0.27** −0.02 −0.12 0.16

Italy −0.04 0.26* 0.06 0.13

Japan 0.13 0.01 −0.31* 0.08

Netherlands −0.14 0.09 −0.08 −0.03

Norway −0.13 0.12 −0.02 0.12

Portugal −0.12 0.03 0.08 0.29

Spain −0.23* −0.08 0.06 0.06

Sweden 0.01 0.30 −0.06 −0.06

Switzerland −0.21* −0.01 0.08 −0.03

UK −0.14 0.34* 0.02 0.14

USA −0.03 0.50*** 0.03 0.30**
Sig. > 0 / Total 0 /16 4 /17 0 /16 3 /16

Sig. < 0 / Total 3 /16 1 /17 2 /16 0 /16

Not sig. / Total 13 /16 12 /17 14 /16 13 /16

Note: Pairwise correlation coefficients in the post-1950 sample. Discount rate and cashflow news for equities
and housing are estimated as the innovations to present value of future returns and cashflows, respectively,
for each asset, using a VAR in returns, cashflow growth and valuations, and present value moment constraints.
Discount rate news for bonds is the change in the spread. *: p < 0.1 **: p < 0.05 ***: p < 0.01
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D.2 Cross-asset return predictability

Predictive power of macro-financial risk factors The consumption-based factors include
the 3-year consumption growth, and the deviation from consumption from its 10-year moving
average trend. For the consumption-wealth ratio, I proxy total financial wealth as the sum of
stock market capitalization and housing wealth, and use real wages as a proxy for real income.9

I then follow Lettau and Ludvigson (2002) and estimate the cointegrating relationship between
consumption, financial wealth and labour income, and compute the consumption-wealth ratio as
the deviation of consumption from this long-run cointegrating relationship. The consumption and
wage data are sourced from the latest vintage of the Jordà-Schularick-Taylor macrohistory database
(Jordà, Schularick, and Taylor, 2016b), stock market capitalization data come from Kuvshinov and
Zimmermann (2020), and housing wealth data are from Jordà, Knoll, Kuvshinov, Schularick, and
Taylor (2019a).

A series of recent papers suggest that high risk appetite by financial intermediaries affects prices
of risky assets, both in theory and in the data (He and Krishnamurthy, 2013; Baron and Muir,
2018). Most measures of risk appetite either correspond to balance sheet strength, or balance sheet
growth of financial intermediaries. Growing leverage or bank assets are, therefore, signs of high
intermediary risk appetite. To this end, I add the 3-year growth in bank leverage, real bank assets
and real credit to the predictor set. The leverage data are from Jordà, Richter, Schularick, and Taylor
(2017), while bank asset and credit data come from (Jordà, Schularick, and Taylor, 2016b).

I also add the stock market capitalization relative to GDP and term spread – two variables
which have been shown to have considerable forecasting power for equity returns. Kuvshinov and
Zimmermann (2020) show that the stock market cap to GDP ratio outperforms the dividend-price
ratio as an equity return predictor, because it incorporates changes in quantities, or issuance, as well
as prices. Campbell (1991), among others, finds that the term spread reliably forecasts US stock
returns. Table 9 shows that only two of the macro-financial risk factors have the right predictive
sign for year-ahead returns across the three asset classes – the consumption-wealth ratio and bank
leverage growth. Figure A.2 evaluates their predictive power at different horizons, for future returns
(panels (a) and (b)) and corporate bond spread growth (panel (c)).

9Because of the lack of data on other classes of wealth, or total income for my historical sample, I restrict
the analysis to stock market and housing wealth, and use wages rather than total labour income to proxy the
flow of human wealth.
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Figure A.2: Predictive power of macro-financial risk factors at different horizons
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(b) Return predictive R2:
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(c) Bond spread growth predictability:
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Note: Predictable cumulative return and spread growth change after a 1 standard deviation increase in
the predictor variable, or a 1 percentage point increase in the bond spread for panel (c) left-hand graph.
Standard errors clustered by country and year and adjusted for autocorrelation. Dashed lines show 95%
confidence bands. The dividend-price ratio, rent-price ratio and bond spread are adjusted for structural
breaks. Cumulative return impact estimated using the beta from regressing h-year ahead returns on either
the own asset yield, or selected macro-financial risk factors. All regressions are run on a consistent sample
across assets, predictors and horizons. 55



E. The co-movement puzzle: additional results

Table A.8: Correlations of real post-tax income growth across the income distribution

Average growth Income growth correlations

Bottom 50% Middle 40% Top 10%

Bottom 50% 1.23 1

Middle 40% 1.34 0.76 1

Top 10% 1.95 0.43 0.76 1

Note: Mean real post-tax income growth, and pairwise correlation coefficients of mean real post-tax income
growth among the bottom 50%, percentiles 50–90, and the top 10% of the income distribution. Data are from
Piketty et al. (2018), and cover US 1962–2014 only. All correlations are significant at the 1% level.

Table A.9: Predictive power of net equity issuance: conditioning on own asset valuation

(1) (2) (3) (4) (5) (6)

Equity Housing Corporate bonds

rt+1 rt+1,t+5 rt+1 rt+1,t+5 rt+1 rt+1,t+5

Net equity issuance / GDP -0.026
∗∗∗ -0.016

∗∗∗
0.006

∗
0.001 -0.009

∗∗ -0.001

(0.006) (0.004) (0.003) (0.002) (0.003) (0.003)

Dividend-price ratio 0.038
∗∗∗

0.023
∗∗∗

(0.007) (0.005)

Rent-price ratio 0.018
∗∗∗

0.021
∗∗∗

(0.004) (0.004)

Corporate bond spread 0.017
∗∗∗

0.007
∗∗

(0.004) (0.003)

R2
0.054 0.095 0.040 0.140 0.034 0.014

Observations 1657 1578 1363 1293 1398 1303

Notes: OLS regressions with country fixed effects. All coefficients are standardised to a 1 standard deviation
increase in the predictor variable. Predictor (x) variables in rows. Net issuance is the log of net equity issuance
relative to GDP, from Kuvshinov and Zimmermann (2020). Dividend-price ratios, rent-price ratios and bond
spreads are adjusted for structural breaks. rt+1 is the 1-year ahead real total return, and rt+1,t+5 is the average
5-year ahead log real total return on the specific asset class. Standard errors clustered by country-year and
adjusted for autocorrelation in parentheses. *: p < 0.1 **: p < 0.05 ***: p < 0.01.
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